
 29

5. Shape - Formas Geométricas
Avançadas

As formas geométricas avançadas que podem ser definidas no campo

geometry do node Shape são PointSet, IndexedLineSet, IndexedFaceSet,

ElevationGrid, Extrusion e Text. Essas geometrias são apresentadas no que se

segue.

5.1. PointSet

A geometria PointSet especifica um conjunto de pontos 3D no sistema de

coordenadas local e as cores associadas a cada ponto. PointSet contém dois

campos: coord, que define as coordenadas de cada um dos pontos e color, que

define a cor de cada um dos pontos. Deve haver tantas cores quanto forem os

pontos.

Sintaxe:

geometry PointSet
 { coord Coordinate

 { point [���� ���� ����,
 ...

 ���� ���� ����

]
 }
 color Color

 { color [���� ���� ����,
 ...

 ���� ���� ����

]
 }

 }

 30

Exemplo:

#VRML V2.0 utf8

#PointSet.wrl

#M#VRML V2.0 utf8

#PointSet.wrl

#Mostra uma “chuva de pontos” através da geometria PointSet

Shape

{ appearance Appearance { }

 geometry PointSet

 { coord Coordinate

 { point

 [# Cooordenadas dos Pontos cor ciano

 1.0 1.0 1.0, 0.5 1.0 1.0,

 1.5 1.5 1.5, 1.0 0.5 1.0,

 2.0 2.0 2.0, 1.0 1.0 0.5,

 2.5 2.5 2.5, 1.5 2.0 2.0,

 3.0 3.0 3.0, 2.0 1.5 2.0,

 # Coordenadas dos Pontos cor Amarela

 -1.0 -1.0 -1.0, -0.5 -1.0 -1.0,

 -1.5 -1.5 -1.5, -1.0 -0.5 -1.0,

 -2.0 -2.0 -2.0, -1.0 -1.0 -0.5,

 -2.5 -2.5 -2.5, -1.5 -2.0 -2.0,

 -3.0 -3.0 -3.0, -2.0 -1.5 -2.0

]

 }

 color Color

 { color

 [# cor ciano

 0.0 1.0 1.0, 0.0 1.0 1.0,

 0.0 1.0 1.0, 0.0 1.0 1.0,

 0.0 1.0 1.0, 0.0 1.0 1.0,

 0.0 1.0 1.0, 0.0 1.0 1.0,

 0.0 1.0 1.0, 0.0 1.0 1.0,

 # cor amarela
 1.0 1.0 0.0, 1.0 1.0 0.0,

 1.0 1.0 0.0, 1.0 1.0 0.0,

 1.0 1.0 0.0, 1.0 1.0 0.0,

 1.0 1.0 0.0, 1.0 1.0 0.0,

 1.0 1.0 0.0, 1.0 1.0 0.0,

]

 }

 }

}

 31

5.2. IndexedLineSet

A geometria IndexedLineSet especifica um conjunto de poli-linhas no

sistema de coordenadas local e as cores associadas. Através da ligação das

linhas, pode-se criar o contorno de qualquer polígono ou contornos de diferentes

objetos, como uma estrela, uma casa, um cubo, uma pirâmide, etc. A geometria

contém cinco campos:

coord: especifica as coordenadas dos pontos que serão conectados para

formar as linhas; o primeiro ponto é o ponto 0, o segundo ponto 1 e assim por

diante.

coordIndex: indica como os pontos serão ligados, formando as poli-linhas;

quando uma poli-linha termina, ela é “partida” pelo número –1; para formar um

polígono fechado é necessário repetir o primeiro ponto.

color: indica as cores que serão usadas para colorir as poli-linhas; a

primeira cor é 0, a segunda 1 e assim por diante.

colorIndex: indica uma cor para cada uma das poli-linhas definidas no

campo coordIndex ou cada um dos pontos definidos em coord.

colorPervertex: se FALSE indica que as cores serão aplicadas às poli-

linhas; neste caso, deverá haver uma cor associada à cada poli-linha definida em

coordIndex (as cores podem se repetir);

se TRUE indica que as cores serão aplicadas aos pontos (vértices): o

resultado final é que cada linha começará com uma cor e terminará com outra,

produzindo um efeito gradiente; neste caso deverá haver tantas cores (definidas

no campo color) quanto o número de vértices (pontos) definidos em coord.

Se considerarmos as coordenadas dos vértices como sendo

ponto 0 (0 0 0), ponto 1 (1 1 0), ponto 2 (-1 0 0) e ponto 3 (-1 -1 0), a figura 11

mostra o resultado de 3 ligações diferentes destes pontos que seriam definidos no

campo coordIndex.

 32

 Figura 11 – diferentes ligações de 4 pontos

Sintaxe:

geometry IndexedLineSet
 { coord Coordinate

 { point [���� ���� ����, #ponto 0
 ...

 ���� ���� ����

]
 }

 coordIndex [����, .. , ����, -1,..., ����, .., ����

]

 color Color

 { color [���� ���� ����, #cor 0
 ...

 ���� ���� ����

]
 }

 colorIndex [����, ����, ..., ����

]

 colorPerVertex TRUE/FALSE
 }

 33

Exemplo:

Veja também o programa EstrelasComLinhas.wrl.

#VRML V2.0 utf8

#IndexedLineSet.wrl

#Desenho das arestas de um cubo com#VRML V2.0 utf8

#IndexedLineSet.wrl

#Desenho das arestas de um cubo com 3 cores diferentes

Shape

{ appearance Appearance { }

 geometry IndexedLineSet

 { coord Coordinate

 { point

 [# Cubo

 1.0 1.0 1.0, # ponto 0

 1.0 -1.0 1.0, # ponto 1

 -1.0 -1.0 1.0, # ponto 2

 -1.0 1.0 1.0, # ponto 3

 1.0 1.0 -1.0, # ponto 4

 1.0 -1.0 -1.0, # ponto 5

 -1.0 -1.0 -1.0, # ponto 6

 -1.0 1.0 -1.0 # ponto 7

]

 }

 color Color

 { color

 [1.0 0.0 0.0, 0.0 1.0 0.0, 0.0 0.0 1.0

 # apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul
]

 }

 coordIndex

 [# Linha vermelha (paralela ao eixo x)

 0, 3, -1, 1, 2, -1, 4, 7, -1, 5, 6, -1,

 # Linha verde (paralela ao eixo y)
 0, 1, -1, 2, 3, -1, 4, 5, -1, 6, 7, -1,

 # Linha azul (paralela ao eixo z)
 0, 4, -1, 1, 5, -1, 2, 6, -1, 3, 7, -1

]

 colorIndex

 [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]

 colorPerVertex FALSE

 }

}

 34

5.3. IndexedFaceSet

A geometria IndexedFaceSet especifica um conjunto de faces no sistema

de coordenadas local e as cores ou texturas associadas. Através da ligação das

faces, pode-se criar qualquer polígono ou diferentes objetos com as faces

preenchidas com cores sólidas, como uma estrela, uma casa, um cubo, uma

pirâmide, etc. A geometria contém onze campos, que incluem texCoord e

texCoordIndex que permitem a aplicação de texturas às faces, mas que não

serão apresentados aqui. Os nove campos a serem abordados são:

coord: especifica as coordenadas dos pontos que serão conectados para

formar as faces; o primeiro ponto é o ponto 0, o segundo ponto 1 e assim por

diante.

coordIndex: indica como os pontos serão ligados, formando as faces;

quando uma face termina, ela é “finalizada” pelo número –1. Não é necessário

repetir o primeiro ponto, a face é sempre fechada.

color: indica as cores que serão usadas para colorir as faces; a primeira

cor é 0, a segunda 1 e assim por diante.

colorIndex: indica uma cor para cada uma das faces definidas no campo

coordIndex ou cada um dos pontos definidos em coord.

colorPervertex: similar ao definido na geometria indexedLineSet.

ccw: TRUE define se os pontos que delimitam as faces serão

apresentados em sentido anti-horário; no sentido horário ou desconhecido, caso

seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados das

faces; TRUE, desenha só a frente.

convex: deve ser TRUE, pois indica que as faces são convexas; FALSE

indicaria que elas seriam côncavas, mas o VRML só trabalha com faces

convexas.

creaseAngle: especifica o limiar de ângulo (em radianos); se duas faces

adjacentes fazem um ângulo maior que o creaseAngle, é possível ver claramente

que duas faces de encontram, pois o encontro delas fica abrupto, o ideal é que

esse encontro seja suave.

 35

Sintaxe:

geometry IndexedLineSet
 { coord Coordinate

 { point [���� ���� ����, #ponto 0
 ...

 ���� ���� ����

]
 }

 coordIndex [����, .. , ����, -1,..., ����, .., ����

]

 color Color

 { color [���� ���� ����, #cor 0
 ...

 ���� ���� ����

]
 }

 colorIndex [����, ����, ..., ����

]

 colorPerVertex TRUE/FALSE

 solid TRUE/FALSE

 ccw TRUE/FALSE

 convex TRUE/FALSE

 creaseAngle ����
 }

 36

Exemplo:

Veja também o programa EstrelaComFaces.wrl.

#VRML V2.0 utf8

#IndexedFaceSet.wrl

#Construcao de uma piramide com faces de diferentes cores.

Shape

{ appearance Appearance

 {

 material Material { }

 }

 geometry IndexedFaceSet

 {

 coord Coordinate

 {

 point

 [

 # Coordenadas dos pontos que formarao as faces da piramide
 -1 -1 0,

 1 -1 0,

 1 1 0,

 -1 1 0,

 0 0 1

]

 }

 coordIndex

 [

 0 1 4 -1,

 1 2 4 -1,

 2 3 4 -1,

 3 0 4

]

 color Color

 {

 color

 [

1.0 0.0 0.0, 0.0 1.0 0.0, 0.0 0.0 1.0

apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul

]

 }

 colorPerVertex FALSE

 colorIndex

 [1 2 0 2]

 solid FALSE

 ccw TRUE

 convex TRUE

 creaseAngle 0

 }

}

 37

5.4. ElevationGrid

A geometria ElevationGrid especifica uma matriz de pontos, cada qual com

uma altura definida; é uma geometria útil para se construir um terreno acidentado

ou malhas. A geometria é construída no plano XZ, como uma matriz, começando

da origem e expandindo-se na direção positiva dos eixos. Os seguintes campos

fazem parte de sua definição:

xDimension: define o número de pontos no eixo X

zDimension: define o número de pontos no eixo Z

xSpacing: define a distância entre dois pontos adjacentes no eixo X

zSpacing: define a distância entre dois pontos adjacentes no eixo Z

height: define uma lista de valores em ponto flutuante que especificam a

altura de cada ponto da matriz; os pontos são ordenados da esquerda para a

direita e de cima para baixo. Deverá haver xDimension multiplicado por

zDimension pontos.

color: define a cor de cada um dos pontos da matriz; mas é opcional.

colorPerVertex: similar ao definido na geometria IndexedLineSet.

ccw: TRUE define se os espaços da matriz de pontos serão apresentados

em sentido anti-horário; horário ou desconhecido, caso seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados da

matriz de pontos; TRUE, desenha só a parte de cima.

convex: deve ser TRUE, pois indica que as faces são convexas; FALSE

indicaria que elas seriam côncavas, mas o VRML só trabalha com faces

convexas.

creaseAngle: especifica o limiar de ângulo (em radianos); se dois pontos

adjacentes da matriz fazem um ângulo maior que o creaseAngle, é possível ver

claramente que os dois se encontram, pois o encontro deles fica abrupto, o ideal é

que esse encontro seja suave.

 38

Sintaxe:

geometry ElevationGrid

 { xDimension ����

 zDimension ����

 xSpacing ����

 zSpacing ����

 height [���� ���� ... ���� ����

 ���� ���� ... ���� ����

]

 color Color

 { color [���� ���� ����, ..., ���� ���� ����,
 ...

 ���� ���� ����, ..., ���� ���� ����

]
 }

 colorPerVertex TRUE/FALSE

 solid TRUE/FALSE

 ccw TRUE/FALSE

 convex TRUE/FALSE

 creaseAngle ����
 }

 39

Exemplo:

Veja o exemplo ElevationGrid.wrl; como seu código é muito grande e

complicado, não será reproduzido aqui. No seu lugar apresenta-se o programa

ElevationGridChess.wrl que desenha um tabuleiro de xadrez. Edite o programa

e visualize-o no Cortona.

#VRML V2.0 utf8

#ElevationGridChess.wrl

#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape

{ geometry ElevationGrid

 { #VRML V2.0 utf8

#ElevationGridChess.wrl

#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape

{

 geometry ElevationGrid

 { xDimension 9

zDimension 9

xSpacing 1

zSpacing 1

height [0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

]

colorPerVertex FALSE

color Color

 { color [0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,

1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,

0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,

1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,

0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,

1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,

0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,

1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,

]

 }

 }

}

 40

5.5. Extrusion

A geometria Extrusion é muito poderosa, permitindo que se construam

formas geométricas complexas usando apenas alguns pontos.

Sintaxe:

geometry Extrusion

 { crossSection [���� ����, ... ,���� ����]

 orientation ���� ���� ���� ����

 scale ���� ����

 solid TRUE/FALSE

 spine [���� ���� ����, ���� ���� ����, ..., ���� ���� ����]

 beginCap TRUE/FALSE

 endCap TRUE/FALSE

 ccw TRUE/FALSE

 convex TRUE/FALSE

 creaseAngle ����

 }

A base de uma forma construída com a geometria Extrusion é uma seção

2D. Por exemplo, considerando um cubo, a base que forma sua seção 2D é um

quadrado. As seções 2D são definidas no plano XZ e as coordenadas de seus

pontos são definidas no campo crossSection. A figura 12 mostra uma seção 2D

para um cubo.

Figura 12 – base que forma uma seção 2D para um cubo

 41

Outro conceito necessário para a construção de uma geometria Extrusion é

o campo spine. A spine define o caminho que a seção 2D vai percorrer para criar

a forma geométrica. Para construir um cubo a partir da seção 2D mostrada na

figura 12, pode-se começar fazendo a seção 2D cruzar o plano em (0,-1,0)

(direção negativa do eixo Y) em direção a (0,1,0) (direção positiva de Y). A figura

13 mostra a spine para o cubo e o caminho a ser percorrido pela seção 2D.

Figura 13 – spine para a seção 2D da figura 12

A spine da figura 13 é definida por dois pontos (0,-1,0) e (0,1,0), embora

possam ter tantos pontos quanto o necessário para a definição da forma. A lista

de passos que o browser segue para desenhar a geometria Extrusion a partir dos

pontos de spine é:

1. Translada a seção 2D para o primeiro ponto da spine.

2. Reorienta a seção 2D definida no plano XZ de forma que o eixo Y coincida

com a direção obtida com os dois pontos da spine (no exemplo da figura

13, esse passo não é necessário).

3. Move a seção 2D para o último ponto da spine.

Após a execução do último passo, o browser vai criar as paredes laterais

do cubo. O resultado final é mostrado na figura 14.

Figura 14 – cubo construído a partir da seção 2D

da figura 12 e spine da figura 13

 42

Os campos beginCap e endCap especificam se a forma será aberta ou

fechada em suas extremidades. A figura 15(a) mostra o cubo da figura 14 quando

os campos beginCap e endCap estão marcados como FALSE – o cubo está

vazado em ambas as extremidades. Além disso, é possível ver somente as duas

faces que estão viradas para os olhos do leitor, pois o campo solid está marcado

como TRUE (ainda em 15a). Marcando o campo solid para FALSE, a visão do

cubo torna-se a mostrada em 15(b).

Figura 15 -(a) cubo com campos beginCap e endCap FALSE e solid TRUE

(b) campo solid FALSE

Exemplo:

#VRML V2.0 utf8

#ExtrusionCube.wrl

#Desenha um cubo a partir da geometria Extrusion

Transform

{ children [Shape

 { appearance Appearance { material Material {}

 }

 geometry Extrusion

 { crossSection [-1 -1,

 -1 1,

 1 1,

 1 -1,

 -1 –1

]

 spine [0 -1 0 , 0 1 0]

 beginCap FALSE

 endCap FALSE

 solid FALSE

 }

 }

]

}

 43

Veja também o exemplo Extrusion.wrl, apresentado a seguir:

#VRML V2.0 utf8

#Extrusion.wrl

#Construcao de um vaso com a geometria Extrusion

#Define ponto de vista inicial
Viewpoint

{ position 0.0 2.0 10.0

 description "Visao inicial"

}

Group

{ children

 [Shape

 { appearance Appearance

 { material Material { diffuseColor 1.0 1.0 0.0 }

 }

 geometry Extrusion

 { creaseAngle 1.57

 endCap FALSE

 solid FALSE

 crossSection

 [# Pontos em XZ que definem a seção 2D que e um circulo

 1.00 0.00, 0.92 -0.38,

 0.71 -0.71, 0.38 -0.92,

 0.00 -1.00, -0.38 -0.92,

 -0.71 -0.71, -0.92 -0.38,

 -1.00 -0.00, -0.92 0.38,

 -0.71 0.71, -0.38 0.92,

 0.00 1.00, 0.38 0.92,

 0.71 0.71, 0.92 0.38,

 1.00 0.00

]

 spine

 [# Pontos que formam os planos que a seção 2D vai cruzar

 0.0 0.0 0.0, 0.0 0.6 0.0,

 0.0 1.0 0.0, 0.0 1.4 0.0,

 0.0 1.8 0.0, 0.0 2.2 0.0,

 0.0 2.6 0.0, 0.0 3.0 0.0,

 0.0 3.4 0.0, 0.0 3.8 0.0,

 0.0 4.2 0.0

]

 scale

 [1.5 1.5, 1.95 1.95,

 2.0 2.0, 1.95 1.95

 1.8 1.8, 1.5 1.5

 1.2 1.2, 1.05 1.05,

 1.0 1.0, 1.05 1.05,

 1.3 1.3,

]

 }

 }

]

}

 44

5.6. Text

 O texto é tratado como uma geometria também, permitindo que palavras e

frases sejam mostrados nos mundos VRML. Os campos que o definem são:

string: contém o texto a ser mostrado; pode ter uma ou mais linhas.

fontStyle: especifica um node à parte que permite que sejam definidos aspectos

de como o texto será apresentado. É composto dos campos:

family: especifica o fonte; valores neste campo podem ser: "SERIF",

"SANS", "TYPEWRITER".

style: especifica o estilo do fonte; valores neste campo podem ser:

"PLAIN", "BOLD", "ITALIC", "BOLDITALIC".

horizontal: TRUE indica que o texto deve ser mostrado na horizontal,

FALSE, na vertical.

leftToRight: TRUE indica que o texto deve ser escrito da esquerda para a

direita; FALSE, da direita para a esquerda (modo árabe)

topToBottom: TRUE indica que o texto deve ser escrito de cima para

baixo; FALSE, de baixo para cima (modo chinês).

justify: se horizontal é TRUE, a justificação principal é horizontal e a

secundária é vertical; se horizontal for FALSE é o contrário. Há quatro

valores para este campo: "FIRST", "BEGIN" (justificado à esquerda),

"MIDDLE" (centralizado) e "END" (justificado à direita).

language: especifica o alfabeto: "en" para English,"en_US" para US

english, "zh" para chinês, etc. Consulte o RFC 1766 para a lista completa.

size: especifica a altura dos caracteres em unidades VRML.

spacing: especifica o espaço entre linhas.

length: especifica o comprimento de cada string em unidades VRML, não em

caracteres. Se o string for muito curto, é escalado, se for muito longo, é

comprimido. Um valor zero indica que o string não deve ser nem escalado nem

comprimido. Zero é o valor default.

maxExtent: limita, diminuindo se necessário, todos os strings.

 45

Sintaxe:

geometry Text

 { string []

 fontStyle { family ""

 style “”

 horizontal TRUE/FALSE

 justify ""

 language ""

 leftToRight TRUE/FALSE

 size ����

 spacing ����

 topToBottom TRUE/FALSE

 leftToRight TRUE/FALSE

 }

 length []

 maxExtent ����

}

Exemplo:

#VRML V2.0 utf8

#Text.wrl

#Sao mostrados tres textos com diferentes caracteristicas.

Texto na posicao default

Shape

{ appearance Appearance

 { material Material { diffuseColor 1.0 1.0 0.0 }

 }

 geometry Text

 { string "Italic serif"

 fontStyle FontStyle

 { size 1.7

 family "SERIF"

 style "ITALIC"

 language "zh"

 leftToRight TRUE

 }

 }

}

 46

Texto centralizado

Transform

 {translation 0.0 3.0 0.0

 children

 [Shape

 { appearance Appearance

 { material Material { diffuseColor 0.0 1.0 0.0 }

 }

 geometry Text

 { string ["Bold", "sans-serif"]

 fontStyle FontStyle

 { size 1.4

 justify "MIDDLE"

 family "SANS"

 style "BOLD"

 topToBottom TRUE

 horizontal TRUE

 }

 }

 }

]

}

Texto alinhado pelo fim

Transform

{ translation -5.0 5.0 0.0

 children

 [Shape

 { appearance Appearance

 { material Material{ diffuseColor 1.0 0.0 1.0 }

 }

 geometry Text

 { string "Roman typewriter"

 fontStyle FontStyle

 { size 0.9

 family "TYPEWRITER"

 style ""

 justify "END"

 horizontal FALSE

 }

 maxExtent 42.5

 }

 }

]

}

 47

6. Shape - Aparência

O node Shape, como foi definido no capítulo 3 e mostrado abaixo, possui

dois campos: appearance (aparência) e geometry (geometria).

Shape

{ appearance Appearance # define a aparência

 {

 ...

 }

 geometry ���� # define a geometria ou forma 3D

 {

 }

}

Nos capítulos 3 e 5 todas as dez formas geométricas que podem ser

definidas no campo geometry foram estudadas. Neste capítulo será estudado o

campo appearance.

Em appearance podem ser definidos os campos material, texture (que é

composto dos campos ImageTexture, MovieTexture e PixelTexture) e

textureTransform. Neste capítulo apenas três dos campos do appearance serão

abordados, quais sejam:

material Material

texture ImageTexture

 texture MovieTexture

 48

6.1. Material

 O campo material Material especifica cor, reflexão da luz e transparência

das formas geométricas e só pode ser definido dentro do campo appearance do

node Shape. Material tem seis campos:

diffuseColor: define a cor da geometria; este campo é ignorado quando

alguma textura é usada.

emissiveColor: usado para definir objetos brilhantes.

ambientIntensity: especifica a quantidade de luz refletida pela geometria.

specularColor: define a cor dos “spots brilhantes” da geometria.

shininess: controla a intensidade do brilho dos “spots brilhantes”;

pequenos valores representam brilho suave e valores altos definem brilhos

intensos.

transparency: controla a trasparência da geoemtria; se um valor 0.0 é

especificado, a geometria é totalmente opaca; o valor 1.0 indica que a geometria

é transparente.

Os campos diffuseColor, emissiveColor e specularColor têm um valor RGB

associado; os outros um valor em ponto flutuante entre 0.0 e 1.0.

Sintaxe:

appearance Appearance

 { material Material

 { diffuseColor ���� ���� ����

 ambientIntensity ����

 emissiveColor ���� ���� ����

 specularColor ���� ���� ����

 shininess ����

 transparency ����

 }

}

 49

Exemplo:

#VRML V2.0 utf8

#Material.wrl

#Sao mostrados seis vasos com diferentes materiais.

#Definicao do ponto de vista inicial.

Viewpoint

{ position 0.0 3.0 15.0

 description "Vista inicial"

}

Group

{ children

 [#Iluminacao

 PointLight

 { location 0.0 10.0 -9.0

 ambientIntensity 0.2

 },

 PointLight

 { location 0.0 10.0 9.0

 ambientIntensity 0.2

 },

 Shape

 { appearance Appearance

 { # Material - aluminio – vaso 1

 material Material

 { ambientIntensity 0.3

 diffuseColor 0.30 0.30 0.50

 specularColor 0.70 0.70 0.80

 shininess 0.10

 }

 }

 #cria um vaso com a geometria Extrusion
 geometry DEF vase Extrusion

 { creaseAngle 1.57

 endCap FALSE

 solid FALSE

 crossSection

 [#Definicao do circulo de crossSection

 1.00 0.00, 0.92 -0.38,

 0.71 -0.71, 0.38 -0.92,

 0.00 -1.00, -0.38 -0.92,

 -0.71 -0.71, -0.92 -0.38,

 -1.00 -0.00, -0.92 0.38,

 -0.71 0.71, -0.38 0.92,

 0.00 1.00, 0.38 0.92,

 0.71 0.71, 0.92 0.38,

 1.00 0.00

]

 spine

 [0.0 0.0 0.0, 0.0 0.6 0.0,

 0.0 1.0 0.0, 0.0 1.4 0.0,

 0.0 1.8 0.0, 0.0 2.2 0.0,

 0.0 2.6 0.0, 0.0 3.0 0.0,

 0.0 3.4 0.0, 0.0 3.8 0.0,

 0.0 4.2 0.0

]

 50

 scale

 [1.5 1.5, 1.95 1.95,

 2.0 2.0, 1.95 1.95

 1.8 1.8, 1.5 1.5

 1.2 1.2, 1.05 1.05,

 1.0 1.0, 1.05 1.05,

 1.3 1.3,

]

 }

 },

 Transform

 { translation -5.0 0.0 0.0

 children

 [Shape

 { appearance Appearance

 { #Material – cobre – vaso 2

 material Material

 { ambientIntensity 0.26

 diffuseColor 0.30 0.11 0.00

 specularColor 0.75 0.33 0.00

 shininess 0.08

 }

 }

 geometry USE vase

 }

]

 },

 Transform

 { translation 5.0 0.0 0.0

 children

 [Shape

 { appearance Appearance

 { #Material – ouro – vaso 3

 material Material

 { ambientIntensity 0.4

 diffuseColor 0.22 0.15 0.00

 specularColor 0.71 0.70 0.56

 shininess 0.16

 }

 }

 geometry USE vase

 }

]

 }

 Transform

 { translation -5.0 0.0 -5.0

 children

 [Shape

 { appearance Appearance

 { # Material - vermelho metalico – vaso 4

 material Material

 { ambientIntensity 0.15

 diffuseColor 0.27 0.0 0.0

 specularColor 0.61 0.13 0.18

 shininess 0.20

 }

 }

 geometry USE vase

 }

]

 }

 51

 Transform

 { translation 0.0 0.0 -5.0

 children

 [Shape

 { appearance Appearance

 { # Material - plastico azul – vaso 5

 material Material

 { ambientIntensity 0.10

 diffuseColor 0.20 0.20 0.71

 specularColor 0.83 0.83 0.83

 shininess 0.12

 }

 }

 geometry USE vase

 }

]

 },

 Transform

 { translation 5.0 0.0 -5.0

 children

 [Shape

 { appearance Appearance

 { # Material – transparencia – vaso 6

 material Material

 { ambientIntensity 0.5

 diffuseColor 0.0 0.0 0.2

 specularColor 1.0 1.0 1.0

 shininess 0.50

 transparency 0.5

 }

 }

 geometry USE vase

 }

]

 }

]

}

6.2. ImageTexture

 O campo texture ImageTexture especifica a localização da imagem que

será utilizada para texturizar a geometria, assim como se a imagem será repetida

verticalmente ou horizontalmente ao longo das faces da forma. Os campos

presentes são:

url: especifica a localização da imagem; os formatos aceitos são

JPG/JPEG - Joint Photographic Experts Group , GIF- Graphical Interchange

Format e PNG- Portable Network Graphics . Podem ser definidas múltiplas

localizações e o browser irá procurar pelos dados em ordem decrescente de

endereços.

 52

repeatS: TRUE indica que a imagem deve ser repetida verticalmente.

repeatT: TRUE indica que a imagem deve ser repetida horizontalmente.

Todos os campos são opcionais e valores default são aplicados quando os

campos não são referenciados. Se a imagem não for localizada, nenhuma textura

é aplicada.

Quando ambos os campos repeatS e repeatT são TRUE a imagem é

repetida duas vezes em cada direção.

 Sintaxe:

appearance Appearance

 { texture ImageTexture

 { url []

 repeatS TRUE/FALSE

 repeatT TRUE/FALSE

 }

 }

Exemplo:

#VRML V2.0 utf8

#ImageTexture.wrl

#Criacao de um vaso com flores. O vaso e mapeado com uma

#textura colorida e a textura das flores possui transparencia.

#Definicao do ponto de vista inicial

Viewpoint

{ position 0.0 5.0 18.0

 description "Vista inicial"

}

Group

{ children

 [#Cria o vaso com a geometria Extrusion

 Shape

 { appearance Appearance

 { texture ImageTexture { url "imporsol.jpg"}

 }

 geometry Extrusion

 { creaseAngle 1.57

 endCap FALSE

 53

 solid FALSE

 crossSection

 [1.00 0.00, 0.92 -0.38,

 0.71 -0.71, 0.38 -0.92,

 0.00 -1.00, -0.38 -0.92,

 -0.71 -0.71, -0.92 -0.38,

 -1.00 -0.00, -0.92 0.38,

 -0.71 0.71, -0.38 0.92,

 0.00 1.00, 0.38 0.92,

 0.71 0.71, 0.92 0.38,

 1.00 0.00

]

 spine

 [0.0 0.0 0.0, 0.0 0.6 0.0,

 0.0 1.0 0.0, 0.0 1.4 0.0,

 0.0 1.8 0.0, 0.0 2.2 0.0,

 0.0 2.6 0.0, 0.0 3.0 0.0,

 0.0 3.4 0.0, 0.0 3.8 0.0,

 0.0 4.2 0.0

]

 scale

 [1.5 1.5, 1.95 1.95,

 2.0 2.0, 1.95 1.95

 1.8 1.8, 1.5 1.5

 1.2 1.2, 1.05 1.05,

 1.0 1.0, 1.05 1.05,

 1.3 1.3,

]

 }

 },

 # Cria um cubo e aplica uma imagem com tulipas,

 # simulando as flores do vaso

 Transform

 { translation 0.0 6.8 0.0

 children

 Shape

 { appearance Appearance

 { #Textura com transparencia

 texture DEF flowers ImageTexture

 { url "imtulipas.jpg"

 }

 }

 geometry Box{ size 5.0 5.0 5.0 }

 }

 }

 #Cria mais um cubo com as flores
 Transform

 { translation 0.0 7.8 0.0

 rotation 0.0 1.0 0.0 -0.75

 children

 Shape

 { appearance Appearance

 { texture USE flowers

 }

 geometry Box { size 3.0 5.0 3.0 }

 }

 }

]

}

 54

6.3. MovieTexture

 O campo texture MovieTexture especifica a localização de um filme que

será utilizado para texturizar a geometria. O filme deve estar no formato MPEG e

pode ser repetido verticalmente ou horizontalmente ao longo das faces da forma.

Os campos presentes são:

loop: especifica se o filme deve ser apresentado repedidamente, sem

parar.

speed: especifica o quão rápido o filme deve ser apresentado; por

exemplo, se a velocidade (speed) for 2 o filme será duas vezes mais rápido;

valores negativos fazem com que o filme seja apresentado de trás para a frente.

startTime: especifica o tempo de início da apresentação do filme em

segundos; o valor deste campo é o número de segundos desde a meia-noite de 1º

de janeiro de 1970.

stopTime: especifica o tempo do final da apresentação do filme em

segundos; o valor deste campo é o número de segundos desde a meia-noite de 1º

de janeiro de 1970.

url: especifica a localização do filme; podem ser definidas múltiplas

localizações e o browser irá procurar pelos dados em ordem decrescente de

endereços.

repeatS: TRUE indica que o filme deve ser repetido verticalmente.

repeatT: TRUE indica que o filme deve ser repetido horizontalmente.

 Em VRML o mundo foi criado à meia-noite de 1º de janeiro de 1970. Alguns

dizem que a razão da escolha desta data foi para coincidir com o nascimento do

sistema operacional UNIX.

 Se o loop é marcado como TRUE e o startTime for maior ou igual a

stopTime, o filme vai ser repetido para sempre. Entretanto, se o startTime for

menor que o stopTime, o filme vai parar assim que o stopTime for alcançado.

Se o startTime for maior ou igual a stopTime, então o filme vai começar tão

logo o startTime for alcançado. Note que alguns browsers somente começam o

filme se o startTime for maior que o stopTime.

 55

Todos os campos são opcionais e valores default são aplicados quando os

campos não são referenciados. Se o filme não for localizado, nenhuma textura é

aplicada.

Sintaxe:

appearance Appearance

 { texture MovieTexture

 { loop TRUE/FALSE

 speed ����

 startTime ����

 stopTime ����

 url []

 repeatS TRUE/FALSE

 repeatT TRUE/FALSE

 }

 }

Exemplo:

#VRML V2.0 utf8

#MovieTexture.wrl

#Usa o vaso com flores criado em ImageTexture.wrl,

#mas no lugar das flores apresenta um filme

#Definicao do ponto de vista inicial
Viewpoint

{ position 0.0 5.0 18.0

 description "Vista inicial"

}

Group

{ children

 [Shape

 { appearance Appearance

 {

 texture ImageTexture

 { url "imporsol.jpg"

 }

 }

 56

 geometry Extrusion

 { creaseAngle 1.57

 endCap FALSE

 solid FALSE

 crossSection

 [1.00 0.00, 0.92 -0.38,

 0.71 -0.71, 0.38 -0.92,

 0.00 -1.00, -0.38 -0.92,

 -0.71 -0.71, -0.92 -0.38,

 -1.00 -0.00, -0.92 0.38,

 -0.71 0.71, -0.38 0.92,

 0.00 1.00, 0.38 0.92,

 0.71 0.71, 0.92 0.38,

 1.00 0.00

]

 spine

 [0.0 0.0 0.0, 0.0 0.6 0.0,

 0.0 1.0 0.0, 0.0 1.4 0.0,

 0.0 1.8 0.0, 0.0 2.2 0.0,

 0.0 2.6 0.0, 0.0 3.0 0.0,

 0.0 3.4 0.0, 0.0 3.8 0.0,

 0.0 4.2 0.0

]

 scale

 [1.5 1.5, 1.95 1.95,

 2.0 2.0, 1.95 1.95

 1.8 1.8, 1.5 1.5

 1.2 1.2, 1.05 1.05,

 1.0 1.0, 1.05 1.05,

 1.3 1.3,

]

 }

 },

 #Cria um cubo em cima do vaso e passa o filme em suas faces

 Transform

 { translation 0.0 6.8 0.0

 children

 Shape

 { appearance Appearance

 { texture MovieTexture

 { url "usuario.mpeg"

 loop TRUE

 speed 1

 }

 }

 geometry Box{ size 5.0 5.0 5.0 }

 }

 }

]

}

 57

Bibliografia Consultada

JAMSA, K, SCHMAUDER, P., YEE, N. VRML biblioteca do
programador. Makron Books, 1999.

AMES, A. L., NADEAU, D. R., MORELAND, J. L. VRML 2.0
sourcebook. John Wiley & Sons, Inc., 1997.

HARTMAN, J., WERNECKE, J. The VRML 2.0 handbook - building
moving worlds on the web. Addison-Wesley Publishing
Company, 1996.

MARRIN, C., CAMPBELL, B. Teach yourself VRML 2 in 21 days,
Sams.net Publishing, 1997.

PESCE, M. VRML browsing and building cyberspace. New Riders
Publishing, 1995.

LEA, R., MATSUDA, K., MIYASHITA, K. Java for 3D and VRML
worlds. New Riders Publishing, 1996.

http://www.terravista.pt/enseada/1527/vrml_ok.htm

http://www.di.ufpe.br/~if291/documentos/vrmlsibgrapi97/toc.htm

http://mirror.impa.br/sibgrapi97/cursos/vrml/cap01/toc.htm

http://www.lighthouse3d.com/vrml/tutorial/index.shtml?intro

http://www.inf.pucrs.br/~pinho/CG/Aulas/Vrml/Vrml2/vrml2Pinho.

htm

