29

-26»
5. Shape - Formas Geométricas
Avancadas

As formas geométricas avangadas que podem ser definidas no campo
geometry do node Shape sido PointSet, IndexedLineSet, IndexedFaceSet,
ElevationGrid, Extrusion e Text. Essas geometrias sdo apresentadas no que se

segue.

5.1. PointSet

A geometria PointSet especifica um conjunto de pontos 3D no sistema de
coordenadas local e as cores associadas a cada ponto. PointSet contém dois
campos: coord, que define as coordenadas de cada um dos pontos e color, que
define a cor de cada um dos pontos. Deve haver tantas cores quanto forem os

pontos.

Sintaxe:

geometry PointSet
{ coord Coordinate

{point[O O O,
000
]

}

color Color
{color[0O O O,

000
]

30

Exemplo:

#VRML V2.0 utf8

#PointSet.wrl

#M#$VRML V2.0 utf8

#PointSet.wrl

#Mostra uma “chuva de pontos” através da geometria PointSet

Shape

{

appearance Appearance

geometry PointSet

{ coord Coordinate

{ point

Cooordenadas dos Pontos cor ciano

[#

0.51.0 1.0,
1.0 0.51.0,
1.01.0 0.5,
1.5 2.0 2.0,
2.0 1.5 2.0,

1.01.0 1.0,
1.51.51.5,
2.0 2.0 2.0,
2.5 2.5 2.5,
3.0 3.0 3.0,

Coordenadas dos Pontos cor Amarela

-1.0 -1.0 -1.0,
-1.5 -1.5 -1.5,
-2.0 -2.0 -2.0,
-2.5 -2.5 -2.5,

-3.0 -3.0 -3.0,

-0.5 -1.0 -1.0,

-1.0 -0.5 -1.0,
-1.0 -1.0 -0.5,

-1.5

-2.0 -2.0,

-2.0

-2.0 -1.5

1

}

color Color

[# cor ciano

{ color

0.01.01.0,
0.01.01.0,
0.01.01.0,
0.01.01.0,
0.01.01.0,

0.01.01.0,
0.01.01.0,
0.01.01.0,
0.0 1.0 1.0,
0.01.01.0,

cor amarela
1.01.0 0.0,
1.0 1.0 0.0,
1.01.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,

1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,

31

e e
5.2. IndexedLineSet

A geometria IndexedLineSet especifica um conjunto de poli-linhas no
sistema de coordenadas local e as cores associadas. Através da ligagdo das
linhas, pode-se criar o contorno de qualquer poligono ou contornos de diferentes
objetos, como uma estrela, uma casa, um cubo, uma pirdmide, etc. A geometria

contém cinco campos:

coord: especifica as coordenadas dos pontos que serdo conectados para
formar as linhas; o primeiro ponto é o ponto 0, o segundo ponto 1 e assim por
diante.

coordilndex: indica como os pontos serdo ligados, formando as poli-linhas;
quando uma poli-linha termina, ela é “partida” pelo numero —1; para formar um
poligono fechado é necessario repetir o primeiro ponto.

color: indica as cores que serdo usadas para colorir as poli-linhas; a
primeira cor € 0, a segunda 1 e assim por diante.

colorindex: indica uma cor para cada uma das poli-linhas definidas no
campo coordindex ou cada um dos pontos definidos em coord.

colorPervertex: se FALSE indica que as cores serdo aplicadas as poli-
linhas; neste caso, devera haver uma cor associada a cada poli-linha definida em
coordIndex (as cores podem se repetir);

se TRUE indica que as cores serdo aplicadas aos pontos (vértices): o
resultado final € que cada linha comegara com uma cor e terminara com outra,
produzindo um efeito gradiente; neste caso devera haver tantas cores (definidas

no campo color) quanto o numero de vértices (pontos) definidos em coord.

Se considerarmos as coordenadas dos vértices como sendo
ponto 0 (0 0 0), ponto 1 (1 1 0), ponto 2 (-1 0 0) e ponto 3 (-1 -1 0), a figura 11
mostra o resultado de 3 ligagdes diferentes destes pontos que seriam definidos no

campo coordlndex.

Sintaxe:

[0123] [3021] [01-123]

Figura 11 — diferentes ligagdes de 4 pontos

geometry IndexedLineSet
{ coord Coordinate

{point[0 O O, #ponto O

ogood

1
}
coordindex[O, .. , O, -1,...,
1
color Color

{color[0 O O, #cor O
Oo0o0od
1

}

colorindex[0O, O, ..., O

]

colorPerVertex TRUE/FALSE
}

32

-28e

Exemplo:

Veja também o programa EstrelasComLinhas.wrl.

33

#VRML V2.0 utf8

#IndexedLineSet.wrl

#Desenho das arestas de um cubo com#VRML V2.0 utf8
#IndexedLineSet.wrl

#Desenho das arestas de um cubo com 3 cores diferentes

Shape

{ appearance Appearance { 1}
geometry IndexedLineSet
{ coord Coordinate

{ point
[# Cubo
1.0 1.0 1.0, # ponto O
1.0 -1.0 1.0, # ponto 1
-1.0 -1.0 1.0, # ponto 2
-1.0 1.0 1.0, # ponto 3
1.0 1.0 -1.0, # ponto 4
1.0 -1.0 -1.0, # ponto 5
-1.0 -1.0 -1.0, # ponto 6
-1.0 1.0 -1.0 # ponto 7
]
}
color Color
{ color

[1.0 0.0 0.0, 0.0 1.0 0.0, 0.0 0.0 1.0
apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul
1
}
coordIndex
[# Linha vermelha (paralela ao eixo x)
o, 3, -1, 1, 2, -1, 4, 7, -1, 5, 6, -1,
Linha verde (paralela ao eixo y)
0,1, -1, 2, 3, -1, 4, 5, -1, 6, 7, -1,
Linha azul (paralela ao eixo z)
o, 4, -1,1,5, -1, 2, 6, -1, 3, 7, -1
1
colorIndex
[01010101111111112121212]
colorPerVertex FALSE

34

e e
5.3. IndexedFaceSet

A geometria IndexedFaceSet especifica um conjunto de faces no sistema
de coordenadas local e as cores ou texturas associadas. Através da ligagcao das
faces, pode-se criar qualquer poligono ou diferentes objetos com as faces
preenchidas com cores solidas, como uma estrela, uma casa, um cubo, uma
piramide, etc. A geometria contém onze campos, que incluem texCoord e
texCoordindex que permitem a aplicagcdo de texturas as faces, mas que nao
serao apresentados aqui. Os nove campos a serem abordados sao:

coord: especifica as coordenadas dos pontos que serdo conectados para
formar as faces; o primeiro ponto € o ponto 0, o segundo ponto 1 e assim por
diante.

coordindex: indica como os pontos serdo ligados, formando as faces;
quando uma face termina, ela é “finalizada” pelo niumero —1. Nao é necessario
repetir o primeiro ponto, a face é sempre fechada.

color: indica as cores que serao usadas para colorir as faces; a primeira
cor € 0, a segunda 1 e assim por diante.

colorindex: indica uma cor para cada uma das faces definidas no campo
coordIndex ou cada um dos pontos definidos em coord.

colorPervertex: similar ao definido na geometria indexedLineSet.

ccw: TRUE define se os pontos que delimitam as faces serdo
apresentados em sentido anti-horario; no sentido horario ou desconhecido, caso
seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados das
faces; TRUE, desenha so6 a frente.

convex: deve ser TRUE, pois indica que as faces sdo convexas; FALSE
indicaria que elas seriam cbéncavas, mas o VRML so6 trabalha com faces
convexas.

creaseAngle: especifica o limiar de angulo (em radianos); se duas faces
adjacentes fazem um angulo maior que o creaseAngle, é possivel ver claramente
que duas faces de encontram, pois o encontro delas fica abrupto, o ideal é que

esse encontro seja suave.

-28e

Sintaxe:

geometry IndexedLineSet
{ coord Coordinate

{point[0 O O, #ponto 0
Oooad
]

coordindex [O,

]

color Color
{color[0 O O, #cor O
0oaod
1
}

colorindex [0, O,

]
colorPerVertex TRUE/FALSE
solid TRUE/FALSE
ccw TRUE/FALSE
convex TRUE/FALSE

creaseAngle O

-28e

Exemplo:

Veja também o programa EstrelaComFaces.wrl.

36

#VRML V2.0 utfs8
#IndexedFaceSet.wrl
#Construcao de uma piramide com faces de diferentes cores.

Shape
{ appearance Appearance

{

material Material { }

}

geometry IndexedFaceSet

{

coord Coordinate
{
point
[

Coordenadas dos pontos que formarao as faces da piramide

-1 -1 0,
1 -1 o0,
1 1 o0,
-1 1 o0,
0 0 1
1
}
coordIndex
[
014 -1,
124 -1,
2 34 -1,
3014

1
color Color
{
color
[
1.0 0.0 0.0, 0.0 1.0 0.0, 0.00.01.0
apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul
1
}
colorPerVertex FALSE
colorIndex
[1 20 2]

solid FALSE
ccw TRUE
convex TRUE
creaseAngle 0

37

B
5.4. ElevationGrid

A geometria ElevationGrid especifica uma matriz de pontos, cada qual com
uma altura definida; € uma geometria util para se construir um terreno acidentado
ou malhas. A geometria é construida no plano XZ, como uma matriz, comegando
da origem e expandindo-se na diregao positiva dos eixos. Os seguintes campos

fazem parte de sua definicao:

xDimension: define o niumero de pontos no eixo X

zDimension: define 0 niumero de pontos no eixo Z

xSpacing: define a distancia entre dois pontos adjacentes no eixo X

zSpacing: define a distancia entre dois pontos adjacentes no eixo Z

height: define uma lista de valores em ponto flutuante que especificam a
altura de cada ponto da matriz; os pontos sdo ordenados da esquerda para a
direita e de cima para baixo. Devera haver xDimension multiplicado por
zDimension pontos.

color: define a cor de cada um dos pontos da matriz; mas é opcional.

colorPerVertex: similar ao definido na geometria IndexedLineSet.

ccw: TRUE define se os espacos da matriz de pontos serdo apresentados
em sentido anti-horario; horario ou desconhecido, caso seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados da
matriz de pontos; TRUE, desenha s6 a parte de cima.

convex: deve ser TRUE, pois indica que as faces sdo convexas; FALSE
indicaria que elas seriam céncavas, mas o VRML so6 trabalha com faces
convexas.

creaseAngle: especifica o limiar de angulo (em radianos); se dois pontos
adjacentes da matriz fazem um angulo maior que o creaseAngle, € possivel ver
claramente que os dois se encontram, pois 0 encontro deles fica abrupto, o ideal é

que esse encontro seja suave.

-28e

Sintaxe:

geometry ElevationGrid
{ xDimension [

zDimension [

xSpacing [
zSpacing [
height[OO ... OO
oo ... 00
]
color Color

{color[0O O 0O,

colorPerVertex TRUE/FALSE
solid TRUE/FALSE

ccw TRUE/FALSE

convex TRUE/FALSE

creaseAngle O

7

goad,

38

39

-28e

Exemplo:

Veja o exemplo ElevationGrid.wrl; como seu codigo € muito grande e
complicado, n&o sera reproduzido aqui. No seu lugar apresenta-se o programa

ElevationGridChess.wrl que desenha um tabuleiro de xadrez. Edite 0 programa

e visualize-o no Cortona.

#VRML V2.0 utf8
#ElevationGridChess.wrl
#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape
{ geometry ElevationGrid
{ #VRML V2.0 utf8
#ElevationGridChess.wrl
#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape
{

geometry ElevationGrid

{ xDimension 9

zDimension 9

xSpacing 1

zSpacing 1

height [00000O0OOO
00000O0OOO
0000O0O0OOO
0000O0O0OOO
0000O0O0OOO
0000O0O0OOO
00000O0OOO
0000O0O0OOO
00000O0OOO

1
colorPerVertex FALSE
color Color

{ color [coo00,111, 000,111, 000,111,000, 111,
111,000,111, 000,111, 000,111, 00O,
coo00,111, 000,111, 000,111,000, 111,
i11, 000,111, 000,111, 000,111, 000,
coo00,111, 000,111, 000,111,000, 111,
111,000,111, 000,111, 000,111, 000,
coo00,111, 000,111, 000,111, 000,111,
i11, 000,111, 000,111, 000,111,000

~
~
~
~

40

5.5. Extrusion

A geometria Extrusion € muito poderosa, permitindo que se construam

formas geométricas complexas usando apenas alguns pontos.
Sintaxe:

geometry Extrusion
{ crossSection[0O O, ... ,0 0]
orientation0 O O O
scale0 O
solid TRUE/FALSE
spine[000, OOO, ...,000]
beginCap TRUE/FALSE
endCap TRUE/FALSE
ccw TRUE/FALSE
convex TRUE/FALSE

creaseAngle [

A base de uma forma construida com a geometria Extrusion € uma secio

2D. Por exemplo, considerando um cubo, a base que forma sua se¢édo 2D é um
quadrado. As secbes 2D sado definidas no plano XZ e as coordenadas de seus

pontos s&o definidas no campo crossSection. A figura 12 mostra uma seg¢éo 2D
para um cubo.

Figura 12 — base que forma uma se¢ao 2D para um cubo

41

Outro conceito necessario para a construcao de uma geometria Extrusion é

0 campo spine. A spine define o caminho que a secdo 2D vai percorrer para criar

a forma _geométrica. Para construir um cubo a partir da se¢ao 2D mostrada na

figura 12, pode-se comecar fazendo a seg¢ao 2D cruzar o plano em (0,-1,0)
(direcao negativa do eixo Y) em dire¢do a (0,1,0) (direcédo positiva de Y). A figura

13 mostra a spine para o cubo e o caminho a ser percorrido pela se¢éao 2D.

(0,1,0)

(0,-1,07

Figura 13 — spine para a se¢ao 2D da figura 12

A spine da figura 13 é definida por dois pontos (0,-1,0) e (0,1,0), embora
possam ter tantos pontos quanto o necessario para a definicdo da forma. A lista
de passos que o0 browser segue para desenhar a geometria Extrusion a partir dos
pontos de spine é:

1. Translada a secdo 2D para o primeiro ponto da spine.
2. Reorienta a se¢ao 2D definida no plano XZ de forma que o eixo Y coincida
com a diregdo obtida com os dois pontos da spine (no exemplo da figura

13, esse passo n&o € necessario).

3. Move a secao 2D para o ultimo ponto da spine.

Apds a execucdo do ultimo passo, o browser vai criar as paredes laterais
do cubo. O resultado final € mostrado na figura 14.

W

Figura 14 — cubo construido a partir da segéo 2D
da figura 12 e spine da figura 13

42

-28e

Os campos beginCap e endCap especificam se a forma sera aberta ou
fechada em suas extremidades. A figura 15(a) mostra o cubo da figura 14 quando
os campos beginCap e endCap estdo marcados como FALSE — o cubo esta
vazado em ambas as extremidades. Além disso, € possivel ver somente as duas
faces que estao viradas para os olhos do leitor, pois 0 campo solid estda marcado
como TRUE (ainda em 15a). Marcando o campo solid para FALSE, a visdo do

cubo torna-se a mostrada em 15(b).

+

Figura 15 -(a) cubo com campos beginCap e endCap FALSE e solid TRUE
(b) campo solid FALSE

Exemplo:

#VRML V2.0 utf8
#ExtrusionCube.wrl
#Desenha um cubo a partir da geometria Extrusion

Transform
{ children [Shape
{ appearance Appearance { material Material ({}

}

geometry Extrusion

{ crossSection [-1 -1,
-1 1,
1 1,
1 -1,
-1 -1

1
spine [0 -1 0 , 0 1 0]
beginCap FALSE
endCap FALSE
solid FALSE

-28e

Veja também o exemplo Extrusion.wrl, apresentado a seguir:

#VRML V2.0 utfs8
#Extrusion.wrl
#Construcao de um vaso com a geometria Extrusion

#Define ponto de vista inicial

Viewpoint

{ position 0.0 2.0 10.0
description "Visao inicial"

}
Group
{ children

[Shape
{ appearance Appearance
{ material Material { diffuseColor 1.0 1.0 0.0 }
}
geometry Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[# Pontos em XZ que definem a secdo 2D que e um circulo
1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,
-0.71 0.71, -0.38 .92,

0
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 0.00
1
spine
[# Pontos que formam os planos que a seg¢do 2D val cruzar
0.0 0.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.01.4 0.0,
0.01.8 0.0, 0.02.20.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.80.0,
0.0 4.2 0.0
1
scale
[1.5 1.5, 1.95 1.95,
2.0 2.0, 1.951.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,

44

A 4o
5.6. Text

O texto é tratado como uma geometria também, permitindo que palavras e

frases sejam mostrados nos mundos VRML. Os campos que o definem sao:

string: contém o texto a ser mostrado; pode ter uma ou mais linhas.
fontStyle: especifica um node a parte que permite que sejam definidos aspectos
de como o texto sera apresentado. E composto dos campos:
family: especifica o fonte; valores neste campo podem ser: "SERIF",
"SANS", "TYPEWRITER".
style: especifica o estilo do fonte; valores neste campo podem ser:
"PLAIN", "BOLD", "ITALIC", "BOLDITALIC".
horizontal: TRUE indica que o texto deve ser mostrado na horizontal,
FALSE, na vertical.
leftToRight: TRUE indica que o texto deve ser escrito da esquerda para a
direita; FALSE, da direita para a esquerda (modo arabe)
topToBottom: TRUE indica que o texto deve ser escrito de cima para
baixo; FALSE, de baixo para cima (modo chinés).
justify: se horizontal € TRUE, a justificagdo principal € horizontal e a
secundaria é vertical; se horizontal for FALSE é o contrario. Ha quatro
valores para este campo: "FIRST", "BEGIN" (justificado a esquerda),
"MIDDLE" (centralizado) e "END" (justificado a direita).
language: especifica o alfabeto: "en" para English,"en_US" para US
english, "zh" para chinés, etc. Consulte o RFC 1766 para a lista completa.
size: especifica a altura dos caracteres em unidades VRML.
spacing: especifica o espacgo entre linhas.
length: especifica o comprimento de cada string em unidades VRML, ndo em
caracteres. Se o string for muito curto, é escalado, se for muito longo, é
comprimido. Um valor zero indica que o string ndo deve ser nem escalado nem
comprimido. Zero é o valor default.

maxExtent: limita, diminuindo se necessario, todos os strings.

-28e

Sintaxe:
geometry Text
{ string[]
fontStyle { family ""
style “”
horizontal TRUE/FALSE
justify ""
language ""
leftToRight TRUE/FALSE
size 0
spacing [
topToBottom TRUE/FALSE
leftToRight TRUE/FALSE
}
length []
maxExtent O
}
Exemplo:

#VRML V2.0 utf8
#Text.wrl
#Sao mostrados tres textos com diferentes caracteristicas.

Texto na posicao default
Shape
{ appearance Appearance
{ material Material { diffuseColor 1.0 1.0 0.0 }
}
geometry Text
{ string "Italic serif"
fontStyle FontStyle
{ size 1.7
family "SERIF"
style "ITALIC"
language "zh"
leftToRight TRUE

45

-28e

Texto centralizado
Transform
{translation 0.0 3.0 0.0
children
[Shape
{ appearance Appearance
{ material Material { diffuseColor 0.0 1.0 0.0 }

}
geometry Text
{ string ["Bold", "sans-serif"]
fontStyle FontStyle
{ size 1.4
justify "MIDDLE"
family ""SANS"
style "BOLD"

topToBottom TRUE
horizontal TRUE

Texto alinhado pelo fim

Transform

{ translation -5.0 5.0 0.0
children
[Shape

{ appearance Appearance
{ material Material{ diffuseColor 1.0 0.0 1.0 }
}
geometry Text
{ string "Roman typewriter"
fontStyle FontStyle

{ size 0.9
family "TYPEWRITER"
Style nmn

justify "END"
horizontal FALSE

}
maxExtent 42.5

46

47

265
6. Shape - Aparéncia

O node Shape, como foi definido no capitulo 3 e mostrado abaixo, possui

dois campos: appearance (aparéncia) e geometry (geometria).

Shape

{ appearance Appearance # define a aparéncia

{

geometry [0 # define a geometria ou forma 3D

{

Nos capitulos 3 e 5 todas as dez formas geométricas que podem ser
definidas no campo geometry foram estudadas. Neste capitulo sera estudado o
campo appearance.

Em appearance podem ser definidos os campos material, texture (que é
composto dos campos ImageTexture, MovieTexture e PixelTexture) e
textureTransform. Neste capitulo apenas trés dos campos do appearance serao
abordados, quais sejam:

material Material

texture ImageTexture

texture MovieTexture

48

A 4o
6.1. Material

O campo material Material especifica cor, reflexdo da luz e transparéncia
das formas geométricas e s6 pode ser definido dentro do campo appearance do
node Shape. Material tem seis campos:

diffuseColor: define a cor da geometria; este campo é ignorado quando
alguma textura é usada.

emissiveColor: usado para definir objetos brilhantes.

ambientintensity: especifica a quantidade de luz refletida pela geometria.

specularColor: define a cor dos “spots brilhantes” da geometria.

shininess: controla a intensidade do brilho dos “spots brilhantes”;
pequenos valores representam brilho suave e valores altos definem brilhos
intensos.

transparency: controla a trasparéncia da geoemtria; se um valor 0.0 é
especificado, a geometria é totalmente opaca; o valor 1.0 indica que a geometria

é transparente.

Os campos diffuseColor, emissiveColor e specularColor tém um valor RGB

associado; os outros um valor em ponto flutuante entre 0.0 e 1.0.

Sintaxe:

appearance Appearance
{ material Material
{ diffuseColor OO0
ambientintensity O
emissiveColor 000
specularColor 000
shininess O

transparency [

-28e

Exemplo:

#VRML V2.0 utf8
#Material.wrl
#Sao mostrados seis vasos com diferentes materiais.

#Definicao do ponto de vista inicial.
Viewpoint
{ position 0.0 3.0 15.0

description "Vista inicial"

}

Group
{ children
[#Iluminacao
PointLight
{ location 0.0 10.0 -9.0
ambientIntensity 0.2
b,
PointLight
{ 1location 0.0 10.0 9.0
ambientIntensity 0.2
}I

Shape
{ appearance Appearance
{ # Material - aluminio - vaso 1

material Material
{ ambientIntensity 0.3
diffuseColor 0.30 0.30 0.50
specularColor 0.70 0.70 0.80
shininess 0.10
}
}
#cria um vaso com a geometria Extrusion
geometry DEF vase Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[#Definicao do circulo de crossSection
1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,
-0.71 0.71, -0.38 .92,

0

0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 o0.00

1

spine

[0.00.00.0, 0.0 0.6 0.0,
0.0 1.0 0.0, 0.01.40.0,
0.0 1.8 0.0, 0.02.20.0,
0.0 2.6 0.0, 0.0 3.00.0,
0.0 3.4 0.0, 0.0 3.80.0,
0.0 4.2 0.0

49

scale
[1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,
1
}
}I
Transform
{ translation -5.0 0.0 0.0
children
[Shape
{ appearance Appearance
{ #Material - cobre - vaso 2
material Material
{ ambientIntensity 0.26
diffuseColor 0.30 0.11 0.00
specularColor 0.75 0.33 0.00
shininess 0.08
}
}

}

geometry USE vase

1

4

Transform

{

translation 5.0 0.0 0.0
children
[Shape
{ appearance Appearance
{ #Material - ouro - vaso 3
material Material
{ ambientIntensity 0.4
diffuseColor 0.22 0.15 0.00
specularColor 0.71 0.70 0.56
shininess 0.16

}
}
geometry USE vase
}
1
}
Transform
{ translation -5.0 0.0 -5.0
children
[Shape
{ appearance Appearance
{ # Material - vermelho metalico - vaso 4
material Material
{ ambientIntensity 0.15
diffuseColor 0.27 0.0 0.0
specularColor 0.61 0.13 0.18
shininess 0.20
}
}
geometry USE vase
}

50

51

-28e

Transform
{ translation 0.0 0.0 -5.0
children
[Shape

{ appearance Appearance
{ # Material - plastico azul - vaso 5
material Material
{ ambientIntensity 0.10
diffuseColor 0.20 0.20 0.71
specularColor 0.83 0.83 0.83
shininess 0.12
}
}

geometry USE vase

1
},

Transform
{ translation 5.0 0.0 -5.0
children
[Shape
{ appearance Appearance
{ # Material - transparencia - vaso 6

material Material

{ ambientIntensity 0.5
diffuseColor 0.0 0.0 0.2
specularColor 1.0 1.0 1.0
shininess 0.50
transparency 0.5

}

}

geometry USE vase

6.2. ImageTexture

O campo texture ImageTexture especifica a localizagdo da imagem que
sera utilizada para texturizar a geometria, assim como se a imagem sera repetida
verticalmente ou horizontalmente ao longo das faces da forma. Os campos
presentes sao:

url: especifica a localizagdo da imagem; os formatos aceitos séao
JPG/JPEG - Joint Photographic Experts Group, GIF- Graphical Interchange
Format e PNG- Portable Network Graphics. Podem ser definidas multiplas
localizagbes e o browser ira procurar pelos dados em ordem decrescente de

enderegos.

-28e

repeatS: TRUE indica que a imagem deve ser repetida verticalmente.

repeatT: TRUE indica que a imagem deve ser repetida horizontalmente.

52

Todos os campos séo opcionais e valores default sdo aplicados quando os

campos nao sao referenciados. Se a imagem nao for localizada, nenhuma textura

€ aplicada.

Quando ambos os campos repeatS e repeatT sdo TRUE a imagem é

repetida duas vezes em cada diregao.

Sintaxe:
appearance Appearance
{ texture ImageTexture
{ wurl[]
repeatS TRUE/FALSE
repeatT TRUE/FALSE
}
}
Exemplo:

#VRML V2.0 utfs8
#ImageTexture.wrl
#Criacao de um vaso com flores. O vaso e mapeado com uma

#textura colorida e a textura das flores possuili transparencia.

#Definicao do ponto de vista inicial
Viewpoint
{ position 0.0 5.0 18.0

description "Vista inicial"

}

Group
{ children
[#Cria o vaso com a geometria Extrusion
Shape
{ appearance Appearance
{ texture ImageTexture { url "imporsol.]jpg"}
}
geometry Extrusion
{ creaseAngle 1.57
endCap FALSE

solid FALSE

crossSection

[1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,

-0.71 0.71, -0.38 0.92,
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 0.00

1

spine

[0.00.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.0 1.4 0.0,
0.01.8 0.0, 0.0 2.2 0.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.8 0.0,
0.0 4.2 0.0

1

scale

[1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,

b,

Cria um cubo e aplica uma imagem com tulipas,
simulando as flores do vaso

Transform
{ translation 0.0 6.8 0.0
children
Shape

{ appearance Appearance
{ #Textura com transparencia
texture DEF flowers ImageTexture
{ url "imtulipas.jpg"

}
}
geometry Box{ size 5.0 5.0 5.0 }
}
}
#Cria mais um cubo com as flores
Transform
{ translation 0.0 7.8 0.0
rotation 0.0 1.0 0.0 -0.75
children
Shape

{ appearance Appearance
{ texture USE flowers

}
geometry Box { size 3.0 5.0 3.0 }

54

-28e

6.3. MovieTexture

O campo texture MovieTexture especifica a localizagao de um filme que
sera utilizado para texturizar a geometria. O filme deve estar no formato MPEG e
pode ser repetido verticalmente ou horizontalmente ao longo das faces da forma.

Os campos presentes s&o:

loop: especifica se o filme deve ser apresentado repedidamente, sem
parar.

speed: especifica o0 quao rapido o filme deve ser apresentado; por
exemplo, se a velocidade (speed) for 2 o filme serd duas vezes mais rapido;
valores negativos fazem com que o filme seja apresentado de tras para a frente.

startTime: especifica o tempo de inicio da apresentacdo do filme em
segundos; o valor deste campo € o numero de segundos desde a meia-noite de 1°
de janeiro de 1970.

stopTime: especifica o tempo do final da apresentacdo do filme em
segundos; o valor deste campo € o numero de segundos desde a meia-noite de 1°
de janeiro de 1970.

url: especifica a localizacdo do filme; podem ser definidas multiplas
localizacbes e o browser ira procurar pelos dados em ordem decrescente de
enderecos.

repeatS: TRUE indica que o filme deve ser repetido verticalmente.

repeatT: TRUE indica que o filme deve ser repetido horizontalmente.

Em VRML o mundo foi criado a meia-noite de 1° de janeiro de 1970. Alguns
dizem que a razao da escolha desta data foi para coincidir com o nascimento do
sistema operacional UNIX.

Se o loop é marcado como TRUE e o startTime for maior ou igual a
stopTime, o filme vai ser repetido para sempre. Entretanto, se o startTime for
menor que o stopTime, o filme vai parar assim que o stopTime for alcancado.

Se o startTime for maior ou igual a stopTime, entdo o filme vai comecar tao
logo o startTime for alcangado. Note que alguns browsers somente comegam o

filme se o startTime for maior que o stopTime.

55
-28e

Todos os campos séo opcionais e valores default sdo aplicados quando os

campos nao sao referenciados. Se o filme nao for localizado, nenhuma textura é
aplicada.

Sintaxe:

appearance Appearance
{ texture MovieTexture
{ loop TRUE/FALSE
speed O
startTime O
stopTime O
url []
repeatS TRUE/FALSE
repeatT TRUE/FALSE

Exemplo:

#VRML V2.0 utfs

#MovieTexture.wrl

#Usa o vaso com flores criado em ImageTexture.wrl,
#mas no lugar das flores apresenta um filme

#Definicao do ponto de vista inicial
Viewpoint
{ position 0.0 5.0 18.0

description "Vista inicial"

}

Group
{ children
[Shape
{ appearance Appearance

{
texture ImageTexture
{ wurl "imporsol.jpg"
}

-28e

geometry Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,

-0.71 0.71, -0.38 0.92,
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 10.38,
1.00 0.00

1

spine

[0.00.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.0 1.4 0.0,
0.01.8 0.0, 0.0 2.2 0.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.8 0.0,
0.0 4.2 0.0

1

scale

[1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,

b,

#Cria um cubo em cima do vaso e passa o filme em suas faces

Transform
{ translation 0.0 6.8 0.0
children
Shape

{ appearance Appearance
{ texture MovieTexture
{ url "usuario.mpeg"
loop TRUE
speed 1
}
}

geometry Box{ size 5.0 5.0 5.0 }

57

-28e

Bibliografia Consultada

JAMSA, K, SCHMAUDER, P., YEE, N. VRML biblioteca do
programador. Makron Books, 1999.

AMES, A. L., NADEAU, D. R.,, MORELAND, J. L. VRML 2.0
sourcebook. John Wiley & Sons, Inc., 1997.

HARTMAN, J., WERNECKE, J. The VRML 2.0 handbook - building
moving worlds on the web. Addison-Wesley Publishing
Company, 1996.

MARRIN, C., CAMPBELL, B. Teach yourself VRML 2 in 21 days,
Sams.net Publishing, 1997.

PESCE, M. VRML browsing and building cyberspace. New Riders
Publishing, 1995.

LEA, R., MATSUDA, K., MIYASHITA, K. Java for 3D and VRML
worlds. New Riders Publishing, 1996.

http://www.terravista.pt/enseada/1527/vrml_ok.htm
http://lwww.di.ufpe.br/~if291/documentos/vrmlisibgrapi97/toc.htm
http://mirror.impa.br/sibgrapi97/cursos/vrml/cap01/toc.htm

http://lwww.lighthouse3d.com/vrml/tutorial/index.shtml?intro

http://www.inf.pucrs.br/~pinho/CG/Aulas/Vrml/Vrml2/vrmI2Pinho.
htm

