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5. Shape - Formas Geométricas
Avancadas

As formas geométricas avangadas que podem ser definidas no campo
geometry do node Shape sido PointSet, IndexedLineSet, IndexedFaceSet,
ElevationGrid, Extrusion e Text. Essas geometrias sdo apresentadas no que se

segue.

5.1. PointSet

A geometria PointSet especifica um conjunto de pontos 3D no sistema de
coordenadas local e as cores associadas a cada ponto. PointSet contém dois
campos: coord, que define as coordenadas de cada um dos pontos e color, que
define a cor de cada um dos pontos. Deve haver tantas cores quanto forem os

pontos.

Sintaxe:

geometry PointSet
{ coord Coordinate

{point[O O O,
000
]

}

color Color
{color[0O O O,

000
]
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Exemplo:

#VRML V2.0 utf8

#PointSet.wrl

#M#$VRML V2.0 utf8

#PointSet.wrl

#Mostra uma “chuva de pontos” através da geometria PointSet

Shape

{

appearance Appearance

geometry PointSet

{ coord Coordinate

{ point

Cooordenadas dos Pontos cor ciano

[ #

0.51.0 1.0,
1.0 0.51.0,
1.01.0 0.5,
1.5 2.0 2.0,
2.0 1.5 2.0,

1.01.0 1.0,
1.51.51.5,
2.0 2.0 2.0,
2.5 2.5 2.5,
3.0 3.0 3.0,

# Coordenadas dos Pontos cor Amarela

-1.0 -1.0 -1.0,
-1.5 -1.5 -1.5,
-2.0 -2.0 -2.0,
-2.5 -2.5 -2.5,

-3.0 -3.0 -3.0,

-0.5 -1.0 -1.0,

-1.0 -0.5 -1.0,
-1.0 -1.0 -0.5,

-1.5

-2.0 -2.0,

-2.0

-2.0 -1.5

1

}

color Color

[ # cor ciano

{ color

0.01.01.0,
0.01.01.0,
0.01.01.0,
0.01.01.0,
0.01.01.0,

0.01.01.0,
0.01.01.0,
0.01.01.0,
0.0 1.0 1.0,
0.01.01.0,

# cor amarela
1.01.0 0.0,
1.0 1.0 0.0,
1.01.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,

1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,
1.0 1.0 0.0,
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5.2. IndexedLineSet

A geometria IndexedLineSet especifica um conjunto de poli-linhas no
sistema de coordenadas local e as cores associadas. Através da ligagdo das
linhas, pode-se criar o contorno de qualquer poligono ou contornos de diferentes
objetos, como uma estrela, uma casa, um cubo, uma pirdmide, etc. A geometria

contém cinco campos:

coord: especifica as coordenadas dos pontos que serdo conectados para
formar as linhas; o primeiro ponto é o ponto 0, o segundo ponto 1 e assim por
diante.

coordilndex: indica como os pontos serdo ligados, formando as poli-linhas;
quando uma poli-linha termina, ela é “partida” pelo numero —1; para formar um
poligono fechado é necessario repetir o primeiro ponto.

color: indica as cores que serdo usadas para colorir as poli-linhas; a
primeira cor € 0, a segunda 1 e assim por diante.

colorindex: indica uma cor para cada uma das poli-linhas definidas no
campo coordindex ou cada um dos pontos definidos em coord.

colorPervertex: se FALSE indica que as cores serdo aplicadas as poli-
linhas; neste caso, devera haver uma cor associada a cada poli-linha definida em
coordIndex (as cores podem se repetir);

se TRUE indica que as cores serdo aplicadas aos pontos (vértices): o
resultado final € que cada linha comegara com uma cor e terminara com outra,
produzindo um efeito gradiente; neste caso devera haver tantas cores (definidas

no campo color) quanto o numero de vértices (pontos) definidos em coord.

Se considerarmos as  coordenadas dos vértices como sendo
ponto 0 (0 0 0), ponto 1 (1 1 0), ponto 2 (-1 0 0) e ponto 3 (-1 -1 0), a figura 11
mostra o resultado de 3 ligagdes diferentes destes pontos que seriam definidos no

campo coordlndex.



Sintaxe:

[0123] [3021] [01-123]

Figura 11 — diferentes ligagdes de 4 pontos

geometry IndexedLineSet
{ coord Coordinate

{point[0 O O, #ponto O

ogood

1
}
coordindex[O, .. , O, -1,...,
1
color Color

{color[0 O O, #cor O
Oo0o0od
1

}

colorindex[0O, O, ..., O

]

colorPerVertex TRUE/FALSE
}
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Exemplo:

Veja também o programa EstrelasComLinhas.wrl.

33

#VRML V2.0 utf8

#IndexedLineSet.wrl

#Desenho das arestas de um cubo com#VRML V2.0 utf8
#IndexedLineSet.wrl

#Desenho das arestas de um cubo com 3 cores diferentes

Shape

{ appearance Appearance { 1}
geometry IndexedLineSet
{ coord Coordinate

{ point
[ # Cubo
1.0 1.0 1.0, # ponto O
1.0 -1.0 1.0, # ponto 1
-1.0 -1.0 1.0, # ponto 2
-1.0 1.0 1.0, # ponto 3
1.0 1.0 -1.0, # ponto 4
1.0 -1.0 -1.0, # ponto 5
-1.0 -1.0 -1.0, # ponto 6
-1.0 1.0 -1.0 # ponto 7
]
}
color Color
{ color

[1.0 0.0 0.0, 0.0 1.0 0.0, 0.0 0.0 1.0
# apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul
1
}
coordIndex
[ # Linha vermelha (paralela ao eixo x)
o, 3, -1, 1, 2, -1, 4, 7, -1, 5, 6, -1,
# Linha verde (paralela ao eixo y)
0,1, -1, 2, 3, -1, 4, 5, -1, 6, 7, -1,
# Linha azul (paralela ao eixo z)
o, 4, -1,1,5, -1, 2, 6, -1, 3, 7, -1
1
colorIndex
[01010101111111112121212]
colorPerVertex FALSE
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5.3. IndexedFaceSet

A geometria IndexedFaceSet especifica um conjunto de faces no sistema
de coordenadas local e as cores ou texturas associadas. Através da ligagcao das
faces, pode-se criar qualquer poligono ou diferentes objetos com as faces
preenchidas com cores solidas, como uma estrela, uma casa, um cubo, uma
piramide, etc. A geometria contém onze campos, que incluem texCoord e
texCoordindex que permitem a aplicagcdo de texturas as faces, mas que nao
serao apresentados aqui. Os nove campos a serem abordados sao:

coord: especifica as coordenadas dos pontos que serdo conectados para
formar as faces; o primeiro ponto € o ponto 0, o segundo ponto 1 e assim por
diante.

coordindex: indica como os pontos serdo ligados, formando as faces;
quando uma face termina, ela é “finalizada” pelo niumero —1. Nao é necessario
repetir o primeiro ponto, a face é sempre fechada.

color: indica as cores que serao usadas para colorir as faces; a primeira
cor € 0, a segunda 1 e assim por diante.

colorindex: indica uma cor para cada uma das faces definidas no campo
coordIndex ou cada um dos pontos definidos em coord.

colorPervertex: similar ao definido na geometria indexedLineSet.

ccw: TRUE define se os pontos que delimitam as faces serdo
apresentados em sentido anti-horario; no sentido horario ou desconhecido, caso
seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados das
faces; TRUE, desenha so6 a frente.

convex: deve ser TRUE, pois indica que as faces sdo convexas; FALSE
indicaria que elas seriam cbéncavas, mas o VRML so6 trabalha com faces
convexas.

creaseAngle: especifica o limiar de angulo (em radianos); se duas faces
adjacentes fazem um angulo maior que o creaseAngle, é possivel ver claramente
que duas faces de encontram, pois o encontro delas fica abrupto, o ideal é que

esse encontro seja suave.
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Sintaxe:

geometry IndexedLineSet
{ coord Coordinate

{point[0 O O, #ponto 0
Oooad
]

coordindex [ O,

]

color Color
{color[0 O O, #cor O
0oaod
1
}

colorindex [0, O,

]
colorPerVertex TRUE/FALSE
solid TRUE/FALSE
ccw TRUE/FALSE
convex TRUE/FALSE

creaseAngle O
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Exemplo:

Veja também o programa EstrelaComFaces.wrl.
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#VRML V2.0 utfs8
#IndexedFaceSet.wrl
#Construcao de uma piramide com faces de diferentes cores.

Shape
{ appearance Appearance

{

material Material { }

}

geometry IndexedFaceSet

{

coord Coordinate
{
point
[

# Coordenadas dos pontos que formarao as faces da piramide

-1 -1 0,
1 -1 o0,
1 1 o0,
-1 1 o0,
0 0 1
1
}
coordIndex
[
014 -1,
124 -1,
2 34 -1,
3014

1
color Color
{
color
[
1.0 0.0 0.0, 0.0 1.0 0.0, 0.00.01.0
# apenas 3 cores 0=Vermelho, 1=Verde e 2=Azul
1
}
colorPerVertex FALSE
colorIndex
[1 20 2]

solid FALSE
ccw TRUE
convex TRUE
creaseAngle 0
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5.4. ElevationGrid

A geometria ElevationGrid especifica uma matriz de pontos, cada qual com
uma altura definida; € uma geometria util para se construir um terreno acidentado
ou malhas. A geometria é construida no plano XZ, como uma matriz, comegando
da origem e expandindo-se na diregao positiva dos eixos. Os seguintes campos

fazem parte de sua definicao:

xDimension: define o niumero de pontos no eixo X

zDimension: define 0 niumero de pontos no eixo Z

xSpacing: define a distancia entre dois pontos adjacentes no eixo X

zSpacing: define a distancia entre dois pontos adjacentes no eixo Z

height: define uma lista de valores em ponto flutuante que especificam a
altura de cada ponto da matriz; os pontos sdo ordenados da esquerda para a
direita e de cima para baixo. Devera haver xDimension multiplicado por
zDimension pontos.

color: define a cor de cada um dos pontos da matriz; mas é opcional.

colorPerVertex: similar ao definido na geometria IndexedLineSet.

ccw: TRUE define se os espacos da matriz de pontos serdo apresentados
em sentido anti-horario; horario ou desconhecido, caso seja FALSE.

solid: FALSE determina se o browser deve desenhar ambos os lados da
matriz de pontos; TRUE, desenha s6 a parte de cima.

convex: deve ser TRUE, pois indica que as faces sdo convexas; FALSE
indicaria que elas seriam céncavas, mas o VRML so6 trabalha com faces
convexas.

creaseAngle: especifica o limiar de angulo (em radianos); se dois pontos
adjacentes da matriz fazem um angulo maior que o creaseAngle, € possivel ver
claramente que os dois se encontram, pois 0 encontro deles fica abrupto, o ideal é

que esse encontro seja suave.
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Sintaxe:

geometry ElevationGrid
{ xDimension [

zDimension [

xSpacing [
zSpacing [
height[ OO ... OO
oo ... 00
]
color Color

{color[0O O 0O,

colorPerVertex TRUE/FALSE
solid TRUE/FALSE

ccw TRUE/FALSE

convex TRUE/FALSE

creaseAngle O

7

goad,

38
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Exemplo:

Veja o exemplo ElevationGrid.wrl; como seu codigo € muito grande e
complicado, n&o sera reproduzido aqui. No seu lugar apresenta-se o programa

ElevationGridChess.wrl que desenha um tabuleiro de xadrez. Edite 0 programa

e visualize-o no Cortona.

#VRML V2.0 utf8
#ElevationGridChess.wrl
#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape
{ geometry ElevationGrid
{ #VRML V2.0 utf8
#ElevationGridChess.wrl
#Desenha um tabuleiro de xadrez com a geometria ElevationGrid

Shape
{

geometry ElevationGrid

{ xDimension 9

zDimension 9

xSpacing 1

zSpacing 1

height [ 00000O0OOO
00000O0OOO
0000O0O0OOO
0000O0O0OOO
0000O0O0OOO
0000O0O0OOO
00000O0OOO
0000O0O0OOO
00000O0OOO

1
colorPerVertex FALSE
color Color

{ color [ coo00,111, 000,111, 000,111,000, 111,
111,000,111, 000,111, 000,111, 00O,
coo00,111, 000,111, 000,111,000, 111,
i11, 000,111, 000,111, 000,111, 000,
coo00,111, 000,111, 000,111,000, 111,
111,000,111, 000,111, 000,111, 000,
coo00,111, 000,111, 000,111, 000,111,
i11, 000,111, 000,111, 000,111,000

~
~
~
~
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5.5. Extrusion

A geometria Extrusion € muito poderosa, permitindo que se construam

formas geométricas complexas usando apenas alguns pontos.
Sintaxe:

geometry Extrusion
{ crossSection[0O O, ... ,0 0]
orientation0 O O O
scale0 O
solid TRUE/FALSE
spine[000, OOO, ...,000]
beginCap TRUE/FALSE
endCap TRUE/FALSE
ccw TRUE/FALSE
convex TRUE/FALSE

creaseAngle [

A base de uma forma construida com a geometria Extrusion € uma secio

2D. Por exemplo, considerando um cubo, a base que forma sua se¢édo 2D é um
quadrado. As secbes 2D sado definidas no plano XZ e as coordenadas de seus

pontos s&o definidas no campo crossSection. A figura 12 mostra uma seg¢éo 2D
para um cubo.

Figura 12 — base que forma uma se¢ao 2D para um cubo
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Outro conceito necessario para a construcao de uma geometria Extrusion é

0 campo spine. A spine define o caminho que a secdo 2D vai percorrer para criar

a forma _geométrica. Para construir um cubo a partir da se¢ao 2D mostrada na

figura 12, pode-se comecar fazendo a seg¢ao 2D cruzar o plano em (0,-1,0)
(direcao negativa do eixo Y) em dire¢do a (0,1,0) (direcédo positiva de Y). A figura

13 mostra a spine para o cubo e o caminho a ser percorrido pela se¢éao 2D.

(0,1,0)

(0,-1,07

Figura 13 — spine para a se¢ao 2D da figura 12

A spine da figura 13 é definida por dois pontos (0,-1,0) e (0,1,0), embora
possam ter tantos pontos quanto o necessario para a definicdo da forma. A lista
de passos que o0 browser segue para desenhar a geometria Extrusion a partir dos
pontos de spine é:

1. Translada a secdo 2D para o primeiro ponto da spine.
2. Reorienta a se¢ao 2D definida no plano XZ de forma que o eixo Y coincida
com a diregdo obtida com os dois pontos da spine (no exemplo da figura

13, esse passo n&o € necessario).

3. Move a secao 2D para o ultimo ponto da spine.

Apds a execucdo do ultimo passo, o browser vai criar as paredes laterais
do cubo. O resultado final € mostrado na figura 14.

W

Figura 14 — cubo construido a partir da segéo 2D
da figura 12 e spine da figura 13
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Os campos beginCap e endCap especificam se a forma sera aberta ou
fechada em suas extremidades. A figura 15(a) mostra o cubo da figura 14 quando
os campos beginCap e endCap estdo marcados como FALSE — o cubo esta
vazado em ambas as extremidades. Além disso, € possivel ver somente as duas
faces que estao viradas para os olhos do leitor, pois 0 campo solid estda marcado
como TRUE (ainda em 15a). Marcando o campo solid para FALSE, a visdo do

cubo torna-se a mostrada em 15(b).

+

Figura 15 -(a) cubo com campos beginCap e endCap FALSE e solid TRUE
(b) campo solid FALSE

Exemplo:

#VRML V2.0 utf8
#ExtrusionCube.wrl
#Desenha um cubo a partir da geometria Extrusion

Transform
{ children [ Shape
{ appearance Appearance { material Material ({}

}

geometry Extrusion

{ crossSection [ -1 -1,
-1 1,
1 1,
1 -1,
-1 -1

1
spine [0 -1 0 , 0 1 0 ]
beginCap FALSE
endCap FALSE
solid FALSE
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Veja também o exemplo Extrusion.wrl, apresentado a seguir:

#VRML V2.0 utfs8
#Extrusion.wrl
#Construcao de um vaso com a geometria Extrusion

#Define ponto de vista inicial

Viewpoint

{ position 0.0 2.0 10.0
description "Visao inicial"

}
Group
{ children

[ Shape
{ appearance Appearance
{ material Material { diffuseColor 1.0 1.0 0.0 }
}
geometry Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[ # Pontos em XZ que definem a secdo 2D que e um circulo
1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,
-0.71 0.71, -0.38 .92,

0
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 0.00
1
spine
[ # Pontos que formam os planos que a seg¢do 2D val cruzar
0.0 0.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.01.4 0.0,
0.01.8 0.0, 0.02.20.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.80.0,
0.0 4.2 0.0
1
scale
[ 1.5 1.5, 1.95 1.95,
2.0 2.0, 1.951.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,
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5.6. Text

O texto é tratado como uma geometria também, permitindo que palavras e

frases sejam mostrados nos mundos VRML. Os campos que o definem sao:

string: contém o texto a ser mostrado; pode ter uma ou mais linhas.
fontStyle: especifica um node a parte que permite que sejam definidos aspectos
de como o texto sera apresentado. E composto dos campos:
family: especifica o fonte; valores neste campo podem ser: "SERIF",
"SANS", "TYPEWRITER".
style: especifica o estilo do fonte; valores neste campo podem ser:
"PLAIN", "BOLD", "ITALIC", "BOLDITALIC".
horizontal: TRUE indica que o texto deve ser mostrado na horizontal,
FALSE, na vertical.
leftToRight: TRUE indica que o texto deve ser escrito da esquerda para a
direita; FALSE, da direita para a esquerda (modo arabe)
topToBottom: TRUE indica que o texto deve ser escrito de cima para
baixo; FALSE, de baixo para cima (modo chinés).
justify: se horizontal € TRUE, a justificagdo principal € horizontal e a
secundaria é vertical; se horizontal for FALSE é o contrario. Ha quatro
valores para este campo: "FIRST", "BEGIN" (justificado a esquerda),
"MIDDLE" (centralizado) e "END" (justificado a direita).
language: especifica o alfabeto: "en" para English,"en_US" para US
english, "zh" para chinés, etc. Consulte o RFC 1766 para a lista completa.
size: especifica a altura dos caracteres em unidades VRML.
spacing: especifica o espacgo entre linhas.
length: especifica o comprimento de cada string em unidades VRML, ndo em
caracteres. Se o string for muito curto, é escalado, se for muito longo, é
comprimido. Um valor zero indica que o string ndo deve ser nem escalado nem
comprimido. Zero é o valor default.

maxExtent: limita, diminuindo se necessario, todos os strings.
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Sintaxe:
geometry Text
{ string[]
fontStyle { family ""
style “”
horizontal TRUE/FALSE
justify ""
language ""
leftToRight TRUE/FALSE
size 0
spacing [
topToBottom TRUE/FALSE
leftToRight TRUE/FALSE
}
length [ ]
maxExtent O
}
Exemplo:

#VRML V2.0 utf8
#Text.wrl
#Sao mostrados tres textos com diferentes caracteristicas.

# Texto na posicao default
Shape
{ appearance Appearance
{ material Material { diffuseColor 1.0 1.0 0.0 }
}
geometry Text
{ string "Italic serif"
fontStyle FontStyle
{ size 1.7
family "SERIF"
style "ITALIC"
language "zh"
leftToRight TRUE

45
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# Texto centralizado
Transform
{translation 0.0 3.0 0.0
children
[ Shape
{ appearance Appearance
{ material Material { diffuseColor 0.0 1.0 0.0 }

}
geometry Text
{ string ["Bold", "sans-serif"]
fontStyle FontStyle
{ size 1.4
justify  "MIDDLE"
family ""SANS"
style "BOLD"

topToBottom TRUE
horizontal TRUE

# Texto alinhado pelo fim

Transform

{ translation -5.0 5.0 0.0
children
[ Shape

{ appearance Appearance
{ material Material{ diffuseColor 1.0 0.0 1.0 }
}
geometry Text
{ string "Roman typewriter"
fontStyle FontStyle

{ size 0.9
family "TYPEWRITER"
Style nmn

justify "END"
horizontal FALSE

}
maxExtent 42.5

46
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6. Shape - Aparéncia

O node Shape, como foi definido no capitulo 3 e mostrado abaixo, possui

dois campos: appearance (aparéncia) e geometry (geometria).

Shape

{ appearance Appearance # define a aparéncia

{

geometry [0 # define a geometria ou forma 3D

{

Nos capitulos 3 e 5 todas as dez formas geométricas que podem ser
definidas no campo geometry foram estudadas. Neste capitulo sera estudado o
campo appearance.

Em appearance podem ser definidos os campos material, texture (que é
composto dos campos ImageTexture, MovieTexture e PixelTexture) e
textureTransform. Neste capitulo apenas trés dos campos do appearance serao
abordados, quais sejam:

material Material

texture ImageTexture

texture MovieTexture
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6.1. Material

O campo material Material especifica cor, reflexdo da luz e transparéncia
das formas geométricas e s6 pode ser definido dentro do campo appearance do
node Shape. Material tem seis campos:

diffuseColor: define a cor da geometria; este campo é ignorado quando
alguma textura é usada.

emissiveColor: usado para definir objetos brilhantes.

ambientintensity: especifica a quantidade de luz refletida pela geometria.

specularColor: define a cor dos “spots brilhantes” da geometria.

shininess: controla a intensidade do brilho dos “spots brilhantes”;
pequenos valores representam brilho suave e valores altos definem brilhos
intensos.

transparency: controla a trasparéncia da geoemtria; se um valor 0.0 é
especificado, a geometria é totalmente opaca; o valor 1.0 indica que a geometria

é transparente.

Os campos diffuseColor, emissiveColor e specularColor tém um valor RGB

associado; os outros um valor em ponto flutuante entre 0.0 e 1.0.

Sintaxe:

appearance Appearance
{ material Material
{ diffuseColor OO0
ambientintensity O
emissiveColor 000
specularColor 000
shininess O

transparency [
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Exemplo:

#VRML V2.0 utf8
#Material.wrl
#Sao mostrados seis vasos com diferentes materiais.

#Definicao do ponto de vista inicial.
Viewpoint
{ position 0.0 3.0 15.0

description "Vista inicial"

}

Group
{ children
[ #Iluminacao
PointLight
{ location 0.0 10.0 -9.0
ambientIntensity 0.2
b,
PointLight
{ 1location 0.0 10.0 9.0
ambientIntensity 0.2
}I

Shape
{ appearance Appearance
{ # Material - aluminio - vaso 1

material Material
{ ambientIntensity 0.3
diffuseColor 0.30 0.30 0.50
specularColor 0.70 0.70 0.80
shininess 0.10
}
}
#cria um vaso com a geometria Extrusion
geometry DEF vase Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[ #Definicao do circulo de crossSection
1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,
-0.71 0.71, -0.38 .92,

0

0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 o0.00

1

spine

[ 0.00.00.0, 0.0 0.6 0.0,
0.0 1.0 0.0, 0.01.40.0,
0.0 1.8 0.0, 0.02.20.0,
0.0 2.6 0.0, 0.0 3.00.0,
0.0 3.4 0.0, 0.0 3.80.0,
0.0 4.2 0.0
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scale
[ 1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,
1
}
}I
Transform
{ translation -5.0 0.0 0.0
children
[ Shape
{ appearance Appearance
{ #Material - cobre - vaso 2
material Material
{ ambientIntensity 0.26
diffuseColor 0.30 0.11 0.00
specularColor 0.75 0.33 0.00
shininess 0.08
}
}

}

geometry USE vase

1

4

Transform

{

translation 5.0 0.0 0.0
children
[ Shape
{ appearance Appearance
{ #Material - ouro - vaso 3
material Material
{ ambientIntensity 0.4
diffuseColor 0.22 0.15 0.00
specularColor 0.71 0.70 0.56
shininess 0.16

}
}
geometry USE vase
}
1
}
Transform
{ translation -5.0 0.0 -5.0
children
[ Shape
{ appearance Appearance
{ # Material - vermelho metalico - vaso 4
material Material
{ ambientIntensity 0.15
diffuseColor 0.27 0.0 0.0
specularColor 0.61 0.13 0.18
shininess 0.20
}
}
geometry USE vase
}
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Transform
{ translation 0.0 0.0 -5.0
children
[ Shape

{ appearance Appearance
{ # Material - plastico azul - vaso 5
material Material
{ ambientIntensity 0.10
diffuseColor 0.20 0.20 0.71
specularColor 0.83 0.83 0.83
shininess 0.12
}
}

geometry USE vase

1
},

Transform
{ translation 5.0 0.0 -5.0
children
[ Shape
{ appearance Appearance
{ # Material - transparencia - vaso 6

material Material

{ ambientIntensity 0.5
diffuseColor 0.0 0.0 0.2
specularColor 1.0 1.0 1.0
shininess 0.50
transparency 0.5

}

}

geometry USE vase

6.2. ImageTexture

O campo texture ImageTexture especifica a localizagdo da imagem que
sera utilizada para texturizar a geometria, assim como se a imagem sera repetida
verticalmente ou horizontalmente ao longo das faces da forma. Os campos
presentes sao:

url: especifica a localizagdo da imagem; os formatos aceitos séao
JPG/JPEG - Joint Photographic Experts Group, GIF- Graphical Interchange
Format e PNG- Portable Network Graphics. Podem ser definidas multiplas
localizagbes e o browser ira procurar pelos dados em ordem decrescente de

enderegos.
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repeatS: TRUE indica que a imagem deve ser repetida verticalmente.

repeatT: TRUE indica que a imagem deve ser repetida horizontalmente.

52

Todos os campos séo opcionais e valores default sdo aplicados quando os

campos nao sao referenciados. Se a imagem nao for localizada, nenhuma textura

€ aplicada.

Quando ambos os campos repeatS e repeatT sdo TRUE a imagem é

repetida duas vezes em cada diregao.

Sintaxe:
appearance Appearance
{ texture ImageTexture
{ wurl[]
repeatS TRUE/FALSE
repeatT TRUE/FALSE
}
}
Exemplo:

#VRML V2.0 utfs8
#ImageTexture.wrl
#Criacao de um vaso com flores. O vaso e mapeado com uma

#textura colorida e a textura das flores possuili transparencia.

#Definicao do ponto de vista inicial
Viewpoint
{ position 0.0 5.0 18.0

description "Vista inicial"

}

Group
{ children
[ #Cria o vaso com a geometria Extrusion
Shape
{ appearance Appearance
{ texture ImageTexture { url "imporsol.]jpg"}
}
geometry Extrusion
{ creaseAngle 1.57
endCap FALSE



solid FALSE

crossSection

[ 1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,

-0.71 0.71, -0.38 0.92,
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0.38,
1.00 0.00

1

spine

[ 0.00.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.0 1.4 0.0,
0.01.8 0.0, 0.0 2.2 0.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.8 0.0,
0.0 4.2 0.0

1

scale

[ 1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,

b,

# Cria um cubo e aplica uma imagem com tulipas,
# simulando as flores do vaso

Transform
{ translation 0.0 6.8 0.0
children
Shape

{ appearance Appearance
{ #Textura com transparencia
texture DEF flowers ImageTexture
{ url "imtulipas.jpg"

}
}
geometry Box{ size 5.0 5.0 5.0 }
}
}
#Cria mais um cubo com as flores
Transform
{ translation 0.0 7.8 0.0
rotation 0.0 1.0 0.0 -0.75
children
Shape

{ appearance Appearance
{ texture USE flowers

}
geometry Box { size 3.0 5.0 3.0 }
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6.3. MovieTexture

O campo texture MovieTexture especifica a localizagao de um filme que
sera utilizado para texturizar a geometria. O filme deve estar no formato MPEG e
pode ser repetido verticalmente ou horizontalmente ao longo das faces da forma.

Os campos presentes s&o:

loop: especifica se o filme deve ser apresentado repedidamente, sem
parar.

speed: especifica o0 quao rapido o filme deve ser apresentado; por
exemplo, se a velocidade (speed) for 2 o filme serd duas vezes mais rapido;
valores negativos fazem com que o filme seja apresentado de tras para a frente.

startTime: especifica o tempo de inicio da apresentacdo do filme em
segundos; o valor deste campo € o numero de segundos desde a meia-noite de 1°
de janeiro de 1970.

stopTime: especifica o tempo do final da apresentacdo do filme em
segundos; o valor deste campo € o numero de segundos desde a meia-noite de 1°
de janeiro de 1970.

url: especifica a localizacdo do filme; podem ser definidas multiplas
localizacbes e o browser ira procurar pelos dados em ordem decrescente de
enderecos.

repeatS: TRUE indica que o filme deve ser repetido verticalmente.

repeatT: TRUE indica que o filme deve ser repetido horizontalmente.

Em VRML o mundo foi criado a meia-noite de 1° de janeiro de 1970. Alguns
dizem que a razao da escolha desta data foi para coincidir com o nascimento do
sistema operacional UNIX.

Se o loop é marcado como TRUE e o startTime for maior ou igual a
stopTime, o filme vai ser repetido para sempre. Entretanto, se o startTime for
menor que o stopTime, o filme vai parar assim que o stopTime for alcancado.

Se o startTime for maior ou igual a stopTime, entdo o filme vai comecar tao
logo o startTime for alcangado. Note que alguns browsers somente comegam o

filme se o startTime for maior que o stopTime.
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Todos os campos séo opcionais e valores default sdo aplicados quando os

campos nao sao referenciados. Se o filme nao for localizado, nenhuma textura é
aplicada.

Sintaxe:

appearance Appearance
{ texture MovieTexture
{ loop TRUE/FALSE
speed O
startTime O
stopTime O
url []
repeatS TRUE/FALSE
repeatT TRUE/FALSE

Exemplo:

#VRML V2.0 utfs

#MovieTexture.wrl

#Usa o vaso com flores criado em ImageTexture.wrl,
#mas no lugar das flores apresenta um filme

#Definicao do ponto de vista inicial
Viewpoint
{ position 0.0 5.0 18.0

description "Vista inicial"

}

Group
{ children
[ Shape
{ appearance Appearance

{
texture ImageTexture
{ wurl "imporsol.jpg"
}
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geometry Extrusion
{ creaseAngle 1.57
endCap FALSE
solid FALSE
crossSection
[ 1.00 0.00, 0.92 -0.38,
0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,

-0.71 0.71, -0.38 0.92,
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 10.38,
1.00 0.00

1

spine

[ 0.00.0 0.0, 0.0 0.6 0.0,
0.01.0 0.0, 0.0 1.4 0.0,
0.01.8 0.0, 0.0 2.2 0.0,
0.0 2.6 0.0, 0.0 3.0 0.0,
0.0 3.4 0.0, 0.0 3.8 0.0,
0.0 4.2 0.0

1

scale

[ 1.5 1.5, 1.95 1.95,
2.0 2.0, 1.95 1.95
1.8 1.8, 1.5 1.5
1.2 1.2, 1.05 1.05,
1.0 1.0, 1.05 1.05,
1.3 1.3,

b,

#Cria um cubo em cima do vaso e passa o filme em suas faces

Transform
{ translation 0.0 6.8 0.0
children
Shape

{ appearance Appearance
{ texture MovieTexture
{ url "usuario.mpeg"
loop TRUE
speed 1
}
}

geometry Box{ size 5.0 5.0 5.0 }
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