

 Curso Básico

Profa. Dra. Elisamara de Oliveira

 2

Índice
1. Introdução ao VRML .. 04

 1.1. Histórico .. 05

1.2. Aplicações do VRML .. 05

1.3. Como começar a navegar em mundos VRML na internet 07

2. A Linguagem VRML .. 09

2.1. Primeiro programa em VRML .. 09

2.2. Cores em VRML ... 11

2.3. Unidades de medida e sistema de coordenadas 12

2.4. Representação de objetos 3D .. 14

3. Shape- Formas Geométricas 3D Primitivas 15

3.1. Box .. 16

3.2. Cone ... 17

3.3. Cylinder ... 19

3.4. Sphere ... 20

3.5. Unindo formas primitivas ... 20

4. Transform- Transformações geométricas 22

4.1. USE DEF e Inline .. 24

4.2. Scale ... 25

4.3. Rotation ... 26

4.4. Translation .. 27

5. Shape- Formas Geométricas Avançadas 29

5.1. PointSet .. 29

5.2. IndexedLineSet .. 31

5.3. IndexedFaceSet ... 34

5.4. ElevationGrid ... 37

5.5. Extrusion .. 40

5.6. Text .. 44

6. Shape- Aparência ... 47

6.1. Material .. 48

6.2. ImageTexture ... 51

6.3. MovieTexture ... 54

Bibliografia Consultada .. 57

 3

“Estude sempre. A renovação das ideias favorece a evolução do espírito”.

FCX

 4

1. Introdução ao VRML
VRML é a abreviação de Virtual Reality Modeling Language, ou

Linguagem para Modelagem em Realidade Virtual. É uma linguagem

independente de plataforma que permite a criação de cenários tridimensionais

(3D) por onde se pode passear, visualizar objetos por ângulos diferentes e até

interagir com eles. É uma linguagem textual para descrição de cenas e ambientes

interativos em 3D; não é uma linguagem de programação.

Arquivos VRML têm extensão .wrl e não são compilados; são arquivos-

texto escritos em ASCII que podem ser interpretados por um interpretador VRML.

Um interpretador ou browser VRML permite a visualização de um programa

VRML localmente ou através da internet. A primeira versão da linguagem não

possibilitava muita iteração do usuário com o mundo virtual, mas versões recentes

acrescentam características como animação, movimentos de corpos e iteração

entre usuários. A última versão é a 2.0, chamada Moving Worlds VRML 2.0. A

“Especificação VRML” é a documentação que descreve todas as características

da linguagem.

A linguagem VRML pode ser usada numa página web preenchendo a

página, preenchendo apenas um retângulo da página ou preenchendo um frame

ou parte do frame.

Apresentada pela primeira vez em 1994 na Primeira Conferência da World

Wide Web, a linguagem tem como objetivo dar o suporte necessário para o

desenvolvimento de mundos virtuais multi-usuários na internet, sem precisar de

redes de alta velocidade. O código VRML é um subconjunto do formato de

arquivo ASCII do Open Inventor, da Silicon Graphics, com características

adicionais para navegação na web. Esta característica é equivalente aos links do

HTML, ou seja, podem-se criar links em um mundo virtual que levem a outros

mundos virtuais.

A linguagem trabalha com geometria 3D (possui as formas geométricas

primitivas cubo, cone, cilindro e esfera e diversas outras geometrias avançadas) e

suporta transformações (rotação, translação, escala), texturas, luz,

sombreamento e animação.

 5

1.1. Histórico

No final da década de 1980, Tim Berners-Lee criou a World Wide Web,

adicionando inovações à internet em termos de conectividade e de interface. Em

maio de 1994, em Genebra, na 1ª Conferência da WWW, o grupo de discussão

de Realidade Virtual decidiu desenvolver uma linguagem de descrição de cena

que pudesse ser usada na web. Em maio de 1995, completou-se a especificação

da VRML 1.0 e em janeiro de 1996 foi lançada a versão 1.0c. Em 1995, foi

formado o VRML Architecture Group (VAG). Foi lançado um call for proposals

(chamada para apresentação de propostas) para uma redefinição e extensão da

linguagem para suportar animação e interação. A Silicon Graphics (SGI),

Netscape e outras companhias criaram a Moving Worlds. Em março de 1996, o

VAG decidiu por larga maioria adotar esta proposta como ponto de partida para o

VRML 2.0. Em 1997 reescreveu-se a especificação para submissão à

International Standards Organization (ISO), criando-se o VRML 97. O primeiro

browser aderente a esta especificação foi o Cortona da SGI.

Os browsers para VRML 1.0 não permitem a exibição de VRML 2.0. A

maioria dos browsers para VRML 2.0 também exibem VRML 1.0, e na maioria dos

casos são capazes também de exibir VRML 97. Para navegar em mundos virtuais

criados com a linguagem será necessário usar plug-ins que permitirão aos

browsers suportarem VRML. Assim, ao invés de visitar homepages, o usuário

visitará homeworlds. Na verdade, existem muitos browsers disponíveis que

suportam diretamente a linguagem; os browsers tradicionais necessitam de

software adicional (plug-in).

1.2. Aplicações do VRML

O VRML tem obtido crescente aceitação como tecnologia padrão da web

para exibição de conteúdo gráfico 3D. O VRML tem se tornado um meio rico de

expressão de idéias na web, pois o mundo VRML é interativo e pode conter

animação, som e filmes. A linguagem é resultado de um processo de discussão e

cooperação aberto, sintetizando o conhecimento e experiência de milhares de

pessoas de modo simples e acessível. O VRML é o primeiro passo a caminho da

web 3D, imersiva e interativa.

 6

Apesar do VRML ser uma tecnologia relativamente nova, apresenta um

enorme potencial em áreas como:

� Ciência (Medicina, Geociências, Engenharia, Arquitetura)

� Entretenimento (jogos, animação)

� Negócios (publicidade, manuais de produtos)

� Artes

� Ensino

O principal problema atual para aplicações na internet é a largura de

banda. Quando mais usuários tiverem acesso às tecnologias de banda larga,

mais e mais aplicações VRML serão utilizadas. A figura 1 traz um exemplo de um

mundo virtual VRML.

Figura 1 – Exemplo de homeworld

 7

1.3. Como começar a navegar em mundos
VRML na internet

Antes de começar a navegar em homeworlds e mesmo programar em

VRML é necessário fazer o download de um browser ou um plug-in VRML para

que os sites e os programas possam ser visualizados. Como a maioria das

pessoas possui os browsers Internet Explorer e Netscape, o melhor é utilizar um

plug-in. O plug-in mais utilizado é o Cortona que se encontra no endereço:

http://www.cortona3d.com/Products/Cortona-3D-Viewer/install.aspx

Estando no site, faça o download do plug-in de acordo com o sistema

operacional da sua máquina. Execute um programa e o Cortona se auto-instalará

na sua máquina. Daí para a frente o Cortona será acionado automaticamente

toda vez que uma página VRML ou arquivo .wrl for ativado.

Agora sua máquina está pronta para desvendar os homeworlds. Conecte-

se à internet e faça uma busca por arquivos .wrl. Um excelente programa de

busca é o google:

http://www.google.com.br

 Esta busca foi feita e alguns resultados interessantes são listados a seguir.

Caso algum desses links não mais exista, tente outros. Tudo muda muito

rapidamente na www.

� Lista de sites em VRML

 http://www.geom.umn.edu/~daeron/bin/legitlist.cgi

� Mundos VRML

 http://www.amazing3d.com/free/free.html

 http://www.frontiernet.net/~imaging/vrml_avatar.html

 8

� Tutoriais/Cursos VRML

 http://sim.di.uminho.pt/vrmltut/toc.html

 http://mirror.impa.br/sibgrapi97/cursos/vrml/cap01/toc.htm

 (em português)

 http://www.lighthouse3d.com/vrml/tutorial/index.shtml?intro

 (em inglês)

� Exemplos do livro VRML 2.0 Sourcebook

 http://www.wiley.com/compbooks

� Especificações VRML

 http://www.web3d.org/vrml/vrml.htm

 http://vag.vrml.org

 http://vrml.sgi.com/moving-worlds/spec

 9

2. A Linguagem VRML
Ficou definido, para fins de identificação, que todo arquivo VRML, na

versão 2, tem que ter o cabeçalho:

#VRML V2.0 utf8

O caracter '#' também significa comentário. Toda linha que começa com #

será ignorada pelo browser. É bom usar comentários no meio do código, isso

facilita a compreensão e identificação de partes do cenário, como por exemplo:

#Uma esfera

2.1. Primeiro programa em VRML

Um arquivo VRML é uma descrição textual do mundo VRML. Arquivos

VRML têm extensão .wrl. Um arquivo VRML é composto de:

� header

� comentários

� nós (nodes), contendo campos (fields) e valores (values)

� rotas e protótipos

#VRML V2.0 utf8

#esfera.wrl
#Uma esfera

Shape
{
 appearance Appearance
 { material Material
 { diffuseColor 1 1 0
 }
 }
 geometry Sphere
 { radius 1.5
 }
}

 10

Tudo o que se precisa para escrever um código VRML é um editor de

textos (por exemplo, o Bloco de Notas). Uma vez editado, o arquivo deve ser

gravado em formato ASCII e ter a extensão .wrl.

Edite o programa descrito anteriormente. Salve o arquivo como esfera.wrl.

Entre no seu browser e abra o arquivo editado (esfera.wrl). Não é preciso estar

conectado à internet, pois o seu arquivo será exibido localmente. Nem é preciso

fechar o arquivo no seu editor de textos. O Cortona entrará em ação e mostrará

uma esfera amarela. Aproveite para se acostumar com os controles da barra

inferior do Cortona, que permite a livre manipulação dos objetos no espaço

tridimensional.

Caso não apareça a esfera, haverá luzes vermelhas piscando na barra

inferior. Isso significa que há erro no arquivo. Clicando nas luzes, aparecerão as

mensagens de erro. Volte ao editor, conserte os erros, salve o arquivo e volte ao

browser novamente. Cuidado, pois o VRML faz diferença entre letras

maiúsculas e minúsculas! Tudo muito simples e fácil, como mostra a figura 2.

Figura 2 – Visualização do programa Esfera.wrl no Cortona

 11

2.2. Cores em VRML

As cores em VRML são definidas pelo sistema RGB - Red (vermelho)

Green (verde) Blue (azul). Utiliza-se um valor numérico associado a cada uma

dessas cores para se obter uma gama maior delas, a partir de sua mistura. Veja a

tabela 1. A tabela 1 traz 8 possibilidades de cores considerando a utilização de

zeros e uns para se definir a presença (1) ou ausência (0) da cor na mistura.

 Tabela 1 – Cores básicas em VRML no sistema RGB

R

(Vermelho)

G

(Verde)

B

(azul)

Cor

Resultante

0 0 0 preto

0 0 1 azul

0 1 0 verde

0 1 1 ciano

1 0 0 vermelho

1 0 1 roxo

1 1 0 amarelo

1 1 1 branco

No programa apresentado na seção 2.1, a cor da esfera foi assim definida:

 appearance Appearance
 {
 material Material

 { diffuseColor 1 1 0
 }

 }

ou seja, a mistura RGB resultou no amarelo. Mas, não existem apenas as 8 cores

mostradas na tabela 1. Os valores associados aos componentes RGB podem

ser quaisquer valores entre 0 e 1! Isso dá uma mistura praticamente infinita

de cores.

Quando nenhuma cor é definida, ou seja, quando o campo diffuseColor é

omitido, a cor assumida é o branco.

 12

Assim, poder-se-ia definir uma cor como:

 appearance Appearance
 {
 material Material

 { diffuseColor 0.57 0.25 0.89
 }
 }

Que cor foi criada? Modifique o programa esfera.wrl e veja o resultado. Faça

outros testes também. Não há limite para a criação de cores.

2.3. Unidades de medida e sistema de
coordenadas

O VRML usa o sistema cartesiano 3D. A seqüência dos eixos é X,Y,Z; a

unidade de medida para distâncias é metros e para ângulos radianos.

O sistema cartesiano 3D define o espaço com um sistema de 3 eixos:

• Eixo X (análogo à largura)

• Eixo Y (análogo à altura)

• Eixo Z (análogo à profundidade)

Assumindo que o cruzamento dos 3 eixos é o ponto central (0,0,0), a

descrição dos objetos no espaço 3D pode ser expressa através de coordenadas

relativas ao ponto central. Cada eixo tem uma direção positiva e negativa,

estendendo-se do ponto central da cena.

Tomando esta página como referência, o eixo-X positivo está para a direita,

o eixo-Y positivo está para cima e o eixo-Z positivo está perpendicular aos dois

anteriores, saindo da página na direção do leitor, conforme mostra a figura 3.

 13

 Figura 3 – sistema de coordenadas 3D

Os objetos dentro da cena (e a própria cena) podem ser rotacionados

mudando a sua orientação de 3 formas (conforme mostra a figura 4):

• Yaw, rotação em torno do eixo Y

• Pitch, rotação em torno do eixo X

• Roll, rotação em torno do eixo Z

Figura 4 – três formas de rotação dos objetos e das cenas

Os 3 eixos e as 3 rotações são chamados de 6 graus de liberdade, que

determinam a localização e orientação dos objetos no espaço 3D.

 14

2.4. Representação de objetos 3D

Os objetos 3D podem ser representados de 4 formas distintas, conforme

mostra a figura 5:

Figura 5 – representação de objetos 3 D

 15

3. Shape- Formas Geométricas 3D
Primitivas

Basicamente, pode-se dizer que um node é um conjunto de especificações

que determinam as características dos objetos contidos no cenário. Os nodes

definem a hierarquia e as características individuais de cada objeto dentro do

contexto geral.

O node descreve o tipo do objeto, que pode ser uma esfera, um cilindro,

uma transformação, uma definição de luz ou textura, etc. Também define as

características de cada um, como altura de um cone, diâmetro de uma esfera,

intensidade da luz ambiente, cor, etc.

Para se definir qualquer forma geométrica 3D em VRML, seja ela básica

ou avançada, utiliza-se o node Shape.

Os objetos tridimensionais em VRML são chamados de Shapes. Um Shape

possui, em geral dois atributos, a aparência e a geometria. A aparência define a

cor do objeto, sua textura, dentre outros atributos. A geometria define qual objeto

ou forma 3D deve ser exibida. O formato de um arquivo VRML que utiliza apenas

um node para definir uma forma geométrica é:

#VRML V2.0 utf8

#Nome do arquivo

#Comentários

Shape

{ appearance Appearance # define a aparência

 {

 ...

 }

 geometry ���� # define a geometria ou forma 3D

 {

 }

}

 16

Neste curso será adotado como padrão colocar o nome do arquivo na

segunda linha dos programas apresentados, na forma de comentário. Assim

o aluno poderá localizar o programa (que se encontra no disquete que

acompanha o curso) e visualizá-lo no Cortona.

As formas geométricas que podem ser definidas no campo geometry

são:

Box

Cone

Cylinder

Sphere

ElevationGrid

Extrusion

IndexedFaceSet

IndexedLineSet

PointSet

Text

As quatro primeiras são formas geométricas primitivas: box (cubo), cone

(cone), cylinder (cilindro) e sphere (esfera) e serão definidas no que se segue.

As outras são consideradas formas de geometria avançada e serão tratadas no

capítulo 5.

3.1. Box

Para definir um cubo (ou um paralelepípedo) usa-se a geometria Box do

node Shape. O centro padrão de um Box é (0,0,0). A geometria tem apenas um

campo size composto de 3 valores em ponto flutuante que correspondem às

dimensões do cubo nas direções X (largura), Y (altura) e Z (profundidade).

 17

Sintaxe:

 geometry Box { size ���� ���� ����
 }

Exemplo:

#VRML V2.0 utf8

#Programa Box.wrl

#Um paralelepípedo azul

Shape

{ appearance Appearance

 { material Material

 { diffuseColor 0.0 0.0 1.0

 }

 }

 geometry Box { size 2.5 2.5 5.0

 }

}

3.2. Cone

 Para definir um cone (chapéu de palhaço) usa-se a geometria Cone do

node Shape. A geometria tem os campos bottomRadius e height que definem o

raio da base e a altura, e dois campos opcionais side e bottom que, se omitidos,

são assinalados para TRUE.

 18

Sintaxe:

geometry Cone { bottomRadius ���� #raio da base

 height ���� #altura

 side TRUE/FALSE #tem a lateral ?

 bottom TRUE/FALSE #tem a base ou é vazado?

 }

Exemplo:

#VRML V2.0 utf8

#Programa Cone.wrl

#Um cone vermelho com lateral e base

Shape

{ appearance Appearance

 { material Material

 { diffuseColor 1 0 0

 }

 }

 geometry Cone { bottomRadius 3
 height 5
 side TRUE
 bottom TRUE
 }
}

Seria um exercício interessante modificar os atributos side e bottom de

TRUE para FALSE para se entender melhor a sua função. O campo bottom

FALSE permite que se construa um “chapéu de palhaço” vazado no centro.

 19

3.3. Cylinder

Para definir um cilindro (canudo de refrigerante) usa-se a geometria

Cylinder do node Shape. A geometria tem os campos radius e height que

definem o raio das duas bases e a altura, e três campos opcionais side, top e

bottom que, se omitidos, são assinalados para TRUE.

Sintaxe:

geometry Cylinder { radius ���� #raio

 height ���� #altura

 side TRUE/FALSE #tem a lateral?

 top TRUE/FALSE #tem a parte de cima?

 bottom TRUE/FALSE #tem a parte de baixo?

 }

Exemplo:

#VRML V2.0 utf8

#Programa Cylinder.wrl

#Um canudinho verde com lateral, vazado no centro

Shape

{ appearance Appearance

 { material Material

 { diffuseColor 0 1 0

 }

 }

 geometry Cylinder { radius 0.5
 height 4
 side TRUE
 top FALSE
 bottom FALSE

 }
}

 20

3.4. Sphere

 Para definir uma esfera (bola) usa-se a geometria Sphere do node Shape.

O centro padrão de uma Sphere é (0,0,0). A geometria tem apenas um campo

radius que define o seu raio.

Sintaxe:

 geometry Sphere { radius ����

 }

Exemplo:

#VRML V2.0 utf8

#Programa Sphere.wrl

#Uma esfera amarela

Shape

{ appearance Appearance

 { material Material

 { diffuseColor 1 1 0

 }

 }

 geometry Sphere { radius 1.89

 }

}

3.5. Unindo formas primitivas

 As formas primitivas podem ser unidas num único programa VRML para se

construir objetos formados a partir delas. No programa Shapes.wrl, que se

segue, o objeto apresentado na figura 6 é construído utilizando-se apenas as

formas primitivas Box, Cylinder e Sphere. Note que o centro de todas as formas

primitivas é o ponto (0,0,0).

 21

Figura 6 – Objeto
construído a partir de
formas primitivas pelo
programa Shapes.wrl

#VRML V2.0 utf8

#Shapes.wrl
#Demonstra o uso de multiplos shapes no mesmo
#arquivo
#Space Station by David R. Nadeau
#Alterado por Elisamara de Oliveira em 04/2001

Shape

{ appearance Appearance
 { material Material { } }

 geometry Box { size 1.0 1.0 1.0 }
}

Shape
{ appearance Appearance
 { material Material { diffuseColor 1 1 0 } }

 geometry Sphere { radius 0.7 }
}

Shape
{ appearance Appearance

 { material Material { diffuseColor 0 1 1} }

 geometry Cylinder { radius 1.25
 height 0.1
 }
}

Shape
{ appearance Appearance

 { material Material { } }

 geometry Cylinder { radius 0.4

 height 2.0
 }
}

Shape
{ appearance Appearance
 { material Material { } }
 geometry Cylinder { radius 0.3
 height 3.0
 }
}

Shape
{ appearance Appearance
 { material Material { diffuseColor 0 1 1 }

 }
 geometry Cylinder { radius 0.1
 height 6.0
 }
}

 22

4. Transform- Transformações
Geométricas

No programa Shapes.wrl apresentado na seção 3.5, todas as formas

primitivas foram desenhadas a partir do centro (0,0,0). Mas é possível deslocar

(transladar) essas formas no espaço tridimensional e mesmo rotacioná-las ou

aumentar ou diminuir seus tamanhos originais a partir de operações de

translação, rotação e escala. Essas operações são realizadas a partir do node

Transform.

O Transform é um group node. Um group node permite que se defina um

conjunto de nodes como um único objeto. Mas o principal propósito do node

Transform é definir um sistema de coordenadas local para os nodes pertencentes

ao grupo.

 Todos os nodes dentro de um grupo Transform são afetados pelas

transformações geométricas. Os principais campos (os outros campos:

scaleOrientation, center, bboxCenter e bboxSize não serão aqui abordados)

que estão presentes no node Transform são:

scale: especifica uma transformação de escalamento 3D. São passados 3

valores em ponto flutuante: o primeiro se refere ao escalamento do objeto na

direção X, o segundo na direção Y e o terceiro na direção Z.

rotation: define uma rotação em torno de um eixo. A rotação é definida por

um vetor (x,y,z) e um ângulo em radianos.

translation: define a origem do sistema de coordenadas local.

children: contém todos os nodes incluídos no group.

 23

Sintaxe:
 Transform

 { scale ���� ���� ����

 rotation ���� ���� ���� ����

 translation ���� ���� ����

 children []

}

Exemplo:

#VRML V2.0 utf8

#TransRotScale.wrl
#Exemplo de Translação, rotação e escala juntos

Shape
{ appearance Appearance
 { material Material
 { diffuseColor 0 0 1
 }
 }
 geometry Cylinder { height 4
 radius 0.5
 }
}

Transform

{ translation 2 2 2
 rotation 3 2.0 2.0 3.14
 scale 1 1.2 1
 children [Shape
 { appearance Appearance
 { material Material
 { diffuseColor 0 1 1
 }
 }

 geometry Cylinder { height 4
 radius 0.5
 }
 }

]
}

 24

 O programa TransRotScale.wrl mostra um cilindro azul centrado no ponto

(0,0,0) e o mesmo cilindro com a cor alterada para ciano (repetido no campo

children do node Transform), após sofrer as operações de translação, rotação e

escala, conforme ilustra a figura 7.

 Figura 7 – Resultado do programa TransRotScale.wrl

4.1. USE DEF e Inline

O programa TransRotScale.wrl descreve o node Cylinder duas vezes: a

primeira para mostrar o cilindro original e a segunda, dentro do node Transform,

no campo children, para mostrá-lo após as transformações geométricas nele

aplicadas. No entanto, esta repetição pode ser evitada através dos comandos

USE DEF e Inline conforme mostram os exemplos abaixo.

#VRML V2.0 utf8

#Inline.wrl
#Exemplo do uso de Inline para evitar repetições do Nó Cylinder

Inline {url "cylinder.wrl"}

Transform
{
 translation 0.8 1.8 1.8
 rotation 1.8 3.8 1.8 2.8
 scale 0.8 1.8 2.8
 children [Inline { url "cylinder.wrl"}]
}

 25

4.2. Scale

A operação de escala permite modificar o tamanho de uma forma

geométrica. A forma pode ser aumentada ou reduzida em qualquer uma das três

dimensões X (largura), Y (altura) e Z (profundidade). O fator de escala deve ser

positivo. A figura 8 mostra um box sem escalamento, depois escalado em x por

0.2, em seguida escalado em y também por 0.2 e por último escalado ao mesmo

tempo em x e em y por 0.2.

 Figura 8 – Box escalado em diferentes dimensões

#VRML V2.0 #VRML V2.0 utf8

#UseDef.wrl
#Exemplo do uso de USE e DEF para evitar repetições do Nó Cylinder

DEF Cilindro Shape
 { appearance Appearance
 {
 material Material { diffuseColor 1 0 1 }
 }
 geometry Cylinder { height 4
 radius 0.5
 }
 }

Transform
{
 translation 0.8 1.8 1.8
 rotation 1.8 3.8 1.8 2.8
 scale 0.8 1.8 2.8
 children USE Cilindro

}

 26

Exemplo:

#VRML V2.0 utf8

#Scale.wrl

Inline {url "cylinder.wrl"}

Transform
{ scale 2 1 1
 translation 2 1 2

 children
 [Shape
 { appearance Appearance
 { material Material { diffuseColor 0 1 1 }
 }
 geometry Cylinder
 { height 4
 radius 0.5
 }
 }

]

}

4.3. Rotation

A rotação é definida por um vetor (x,y,z) e um ângulo em radianos. O vetor

define o eixo de rotação enquanto o ângulo define o quanto que o objeto será

rotacionado no sentido horário.

Na figura 9, o primeiro box não está rotacionado; o segundo box está

rotacionado por um ângulo de 45 graus em torno de Y; o terceiro está rotacionado

em 45o em torno de X; o último está rotacionado em 45o usando o vetor (1 1 0).

 Figura 9 – Box rotacionado em diferentes eixos

 27

Exemplo:

#VRML V2.0 utf8

#Rotation.wrl

Inline {url "cylinder.wrl"}

Transform
{ rotation 2 2 1 3
 children [Shape
 { appearance Appearance
 { material Material { diffuseColor 0 1 1 }
 }
 geometry Cylinder
 { height 4
 radius 0.5
 }
 }
]
}

4.4. Translation

A translação perimite que se desloque o objeto para o lugar que se queira

no espaço tridimensional. A figura 10 ilustra este conceito. As linhas tracejadas

representam o sistema de coordenadas usado fora do node Transform. As linhas

sólidas reprsentam o sistema de coordenadas local dentro do node Transform

definido pela seta que aponta para a nova posição (x,y,z). Na figura 10, a

translação é para (1,1,0).

 Figura 10 – Novo eixo a partir de uma translação

 28

Exemplo:

#VRML V2.0 utf8

#Translation.wrl

#ESTE É O CILINDRO ORIGINAL
Inline {url "cylinder.wrl"}

#ESTE É O CILINDRO TRANSLADADO
Transform
{ translation 2 1 2
 children
 [Shape
 { appearance Appearance
 { material Material { diffuseColor 0 1 1 }

 }
 geometry Cylinder
 { height 4

 radius 0.5
 }
 }

]
}

