
Animação

Animações - o dinamismo da forma!!!

• VRML permite um grande número de animações, que
podem ser disparadas por aproximações e toques.

• Tais animações fazem as formas se movimentarem
baseadas num dado tempo, que, é controlado por um
relógio com tempos fracionados em números reais.

• As frações de tempo devem ser associadas a quadros que
contêm as posições chaves da animação, dando a noção
de movimento da forma.

• As animações podem ser estendidas também à aparência
das formas e não somente à posição da forma.

Animações - aspectos básicos:

• VRML provê diversas maneiras de descrição de
animações. As mais comuns usam os nós:
– PositionInterpolator

– OrientationInterpolator

• O fundamento é a associação de posições chave com
tempos chave - de forma fracional.

• Um nó importante no processo é o nó de controle de
tempos fracionais: o nó TimeSensor:
– TimeSensor{

enabled

startTime

stopTime

cycleInterval

loop ... }

Animações - aspectos básicos:
• Sintaxe do nó PositionInterpolator:

– PositionInterpolator{

key [...] - lista de tempos fracionais chave

keyValue [...] - lista de posições chave - cada uma
composta por X,Y,Z

set_fraction - eventIn

value_Changed - eventOut

}

• Sintaxe do nó OrientationInterpolator:
– OrientationInterpolator

key [...]

keyValue [...] - lista de rotações chave - cada uma composta p

por X,Y,Z e um ângulo de rotação.

set_fraction

value_Changed }

Exemplo de animação:

#VRML V2.0 utf8

Group {

children [

DEF Cube Transform {

children Shape {

appearance Appearance {

material Material {

diffuseColor 0.0 1.0 0.0 }

}

geometry Box { size 1.0 1.0 1.0 }

}

},

Relógio da animação - gerando tempos fracionais

DEF Clock TimeSensor {

cycleInterval 4.0

loop TRUE

},

Caminho da animação do cubo - posições chave e valores de

cada posição

DEF CubePath PositionInterpolator {

key [

0.00, 0.11, 0.17, 0.22,

0.33, 0.44, 0.50, 0.55,

0.66, 0.77, 0.83, 0.88,

0.99

]

keyValue [

0.0 0.0 0.0, 1.0 1.96 1.0,

1.5 2.21 1.5, 2.0 1.96 2.0,

3.0 0.0 3.0, 2.0 1.96 3.0,

1.5 2.21 3.0, 1.0 1.96 3.0,

0.0 0.0 3.0, 0.0 1.96 2.0,

0.0 2.21 1.5, 0.0 1.96 1.0,

0.0 0.0 0.0

]

Observe a equivalência de quantidade de posições e tempos

chave

}

]

}

ROUTE Clock.fraction_changed TO CubePath.set_fraction

ROUTE CubePath.value_changed TO Cube.set_translation

Animações: sentindo ações do usuário

• Em VRML há a possibilidade de sentir o toque, a
aproximação e os movimentos do usuário, através
do mouse, claro.

• O conjunto de nós utilizados para este fim é
constituído por:

– Nó TouchSensor

– Nó CylinderSensor

– Nó SphereSensor

– Nó PlaneSensor

• Tais nós podem ser incluídos em qualquer grupo e
com rotas, podem disparar animações

• As ações do usuário podem promover
movimentos diversos:

• TouchSensor: sentir ações do tipo “click” e “drag”

• PlaneSensor: sensível às ações do tipo “drag”, serve para
computar distâncias de translação, gerando mudanças de
posição das formas - usado para arrastar as formas através
do cenário

• SphereSensor: sensível às ações do tipo “drag” - computa
eixos de rotação e ângulos, com saídas que podem gerar
rotações de formas

• CylinderSensor: também sensível às ações do tipo “drag”,
capaz de produzir também rotações das formas, como,
por exemplo, abrir uma porta, já que possibilita definir um
máximo e um mínimo

Exemplo de animação

• Este exemplo mostra um nome em animação, disparado
por um sensor de toque - a delimitação de posições -
inicial e final, se dá por meio do nó
OrientationInterpolator, associado ao disparo feito pelo nó
TouchSensor

• O nome pode ser arrastado, usando o nó PlaneSensor, que
com o movimento do mouse, leva o mesmo para a posição
que desejarmos na tela.

• Aqui, um texto é animado, mas, poderíamos fazer isto
com qualquer forma do meu cenário.

• Observe que as rotas de mudanças devem ser
expressamente declaradas.

#VRML V2.0 utf8

Aqui um nome gira com o toque do mouse... basta pressionar o botão esq.

do mouse para o movimento acontecer... Reparar na transparência do chão

nas cores das letras e no toque.

Group {

children [

Rotating Nome

DEF Nome Transform {

#translation -5.0 0.0 0.0

children [

Shape {

appearance DEF White Appearance {

material Material { }

}

geometry Text {

string ["Alexandre", "Cardoso"]

fontStyle DEF Fonte FontStyle{

size 0.9

style "BOLD"

family "SANS"

justify "MIDDLE" } } },

Shape { appearance Appearance { material Material {

diffuseColor 0.0 1.0 1.0

transparency 0.5 } }

geometry Box {

size 3.7 0.05 2.0 } }] },

Sensor

DEF Touch TouchSensor { },

DEF Arrasta PlaneSensor { },

Animation clock

DEF Clock TimeSensor { cycleInterval 5.0

loop FALSE},

Animation path

DEF CubePath OrientationInterpolator {

key [0.0, 0.50, 1.0]

keyValue [

0.0 1.0 0.0 0.0,

0.0 1.0 0.0 -3.14,

0.0 1.0 0.0 -6.28

]

}

]

}

ROUTE Touch.touchTime TO Clock.set_startTime

ROUTE Clock.fraction_changed TO CubePath.set_fraction

ROUTE CubePath.value_changed TO Nome.set_rotation

ROUTE Arrasta.translation_changed TO Nome.set_translation

